
A Gittins Policy for Optimizing Tail
Latency

1

Amit Harlev Cornell CAM

George Yu Cornell ORIE
Cornell ORIEZiv Scully

Joint work with

 Main takeaway

We know how to minimize tail
latency in queues!

2

 Main takeaway

We know how to minimize tail
latency in queues!

for most information
models

2

 Main takeaway

We know how to minimize tail
latency in queues!

for most information
models

If you have a problem where this is needed,
please come talk to us!

2

serverqueue

What is the problem?

3

serverqueue

light-tailed
M/G random

arrivals

What is the problem?

3

serverqueue

light-tailed
M/G random

arrivals

Poisson arrivals

What is the problem?

3

serverqueue

light-tailed
M/G random

arrivals

arbitrary light-tailed
distribution S

Poisson arrivals

What is the problem?

3

serverqueue

light-tailed
M/G random

arrivals

arbitrary light-tailed
distribution S

Poisson arrivals

job

What is the problem?

3

serverqueue

light-tailed
M/G random

arrivals

arbitrary light-tailed
distribution S

Poisson arrivals

job

What is the problem?

3

serverqueue

light-tailed
M/G random

arrivals

arbitrary light-tailed
distribution S

Poisson arrivals

job

What is the problem?

3

serverqueue

light-tailed
M/G random

arrivals

arbitrary light-tailed
distribution S

Poisson arrivals

job

What is the problem?

3

serverqueue

light-tailed
M/G random

arrivals

arbitrary light-tailed
distribution S

Poisson arrivals

job

What is the problem?

3

serverqueue

light-tailed
M/G random

arrivals

arbitrary light-tailed
distribution S

Poisson arrivals

job

What is the problem?

3

serverqueue

light-tailed
M/G random

arrivals

arbitrary light-tailed
distribution S

Poisson arrivals

What is the problem?

3

serverqueue

light-tailed
M/G random

arrivals

arbitrary light-tailed
distribution S

Poisson arrivals

What is the problem?

3

serverqueue

light-tailed
M/G random

arrivals

arbitrary light-tailed
distribution S

Poisson arrivals

What is the problem?

3

serverqueue

light-tailed
M/G random

arrivals

arbitrary light-tailed
distribution S

Poisson arrivals

What is the problem?

3

serverqueue

light-tailed
M/G random

arrivals

arbitrary light-tailed
distribution S

Poisson arrivals

captures many information models in a single result

What is the problem?

3

Known Size
()S = 6

Examples of information models

4

Unknown Size
()S ∼ Unif{2,4,6}

Known Size
()S = 6

Examples of information models

4

Unknown Size
()S ∼ Unif{2,4,6}

Known Size
()S = 6

Partial information
()S ∼ Unif{4,6}

Examples of information models

4

serverqueue

light-tailed
M/G random

arrivals

Goal: scheduling policy that minimizes asymptotic behavior of the
tail of response time,

π
P[Tπ > x]

What is the problem?

5

serverqueue

light-tailed
M/G random

arrivals

Goal: scheduling policy that minimizes asymptotic behavior of the
tail of response time,

π
P[Tπ > x]

 = response time under policy
(“total time in system”)

Tπ π

What is the problem?

5

Asymptotic response time tail

6

threshold x

1

probability

response time tail
P[Tπ > x]

Asymptotic response time tail

6

threshold x

1

probability

response time tail
P[Tπ > x]

when S is
light-tailed

Asymptotic response time tail

6

Cπ

threshold x

1

probability

response time tail
P[Tπ > x]

asymptotic behavior
 (roughly)Cπe−γπx

when S is
light-tailed

decay rate of γπ = π
tail constant of Cπ = π

Asymptotic response time tail

6

Cπ

threshold x

1

probability

response time tail
P[Tπ > x]

asymptotic behavior
 (roughly)Cπe−γπx

when S is
light-tailed

decay rate of γπ = π
tail constant of Cπ = π

Heavy-tailed S:
PS & LAS have optimal

asymptotic behavior
[Wierman & Zwart 2012,

Yu & Scully 2024]

Asymptotic response time tail

6

Cπ

threshold x

1

probability

response time tail
P[Tπ > x]

asymptotic behavior
 (roughly)Cπe−γπx

when S is
light-tailed

decay rate of γπ = π
tail constant of Cπ = π

Weak optimality:
optimal γπ

Heavy-tailed S:
PS & LAS have optimal

asymptotic behavior
[Wierman & Zwart 2012,

Yu & Scully 2024]

Asymptotic response time tail

6

Cπ

threshold x

1

probability

response time tail
P[Tπ > x]

asymptotic behavior
 (roughly)Cπe−γπx

when S is
light-tailed

decay rate of γπ = π
tail constant of Cπ = π

Weak optimality:
optimal γπ

Strong optimality:
optimal and γπ Cπ

Heavy-tailed S:
PS & LAS have optimal

asymptotic behavior
[Wierman & Zwart 2012,

Yu & Scully 2024]

Asymptotic response time tail

6

Why is tail scheduling hard?

7

scheduling for response time: short jobs before long jobs

Why is tail scheduling hard?

7

…leads to poor tail performance

scheduling for response time: short jobs before long jobs

Why is tail scheduling hard?

7

…leads to poor tail performance

prioritize

short jobs

don’t starve

long jobs

scheduling for response time: short jobs before long jobs

Why is tail scheduling hard?

7

prioritize

short jobs

don’t starve

long jobs

Does any policy in the literature balance this?

Managing the tradeoff

8

prioritize

short jobs

don’t starve

long jobs

Does any policy in the literature balance this?

Most policies: priority based on job’s size or attained service

Managing the tradeoff

8

prioritize

short jobs

don’t starve

long jobs

Does any policy in the literature balance this?

Most policies: priority based on job’s size or attained service

not flexible enough!

Managing the tradeoff

8

prioritize

short jobs

don’t starve

long jobs

Does any policy in the literature balance this?

Most policies: priority based on job’s size or attained service

not flexible enough!

Managing the tradeoff

 [Scully & van Kreveld, 2024]:

FCFS is only SOAP policy that is even
weakly optimal.

8

Existing work

9

FCFS weakly optimal [Boxma & Zwart]

Known Sizes Partial Information

2007 FCFS weakly optimal [Boxma & Zwart]

Existing work

9

FCFS weakly optimal [Boxma & Zwart]

Nudge [Grosof et al]

Known Sizes Partial Information

2007

2021

FCFS weakly optimal [Boxma & Zwart]

Existing work

9

FCFS weakly optimal [Boxma & Zwart]

Nudge [Grosof et al]

Nudge-K [Van Houdt]

Nudge-M [Charlet & Van Houdt]

Known Sizes Partial Information

2007

2021

2022

2024

FCFS weakly optimal [Boxma & Zwart]

Existing work

9

FCFS weakly optimal [Boxma & Zwart]

Nudge [Grosof et al]

-Boost [Yu & Scully, SIGMETRICS 2024]γ

Nudge-K [Van Houdt]

Nudge-M [Charlet & Van Houdt]

Known Sizes Partial Information

2007

2021

2022

2024

FCFS weakly optimal [Boxma & Zwart]

strongly optimal!

Existing work

9

FCFS weakly optimal [Boxma & Zwart]

Nudge [Grosof et al]

-Boost [Yu & Scully, SIGMETRICS 2024]γ

Nudge-K [Van Houdt]

Nudge-M [Charlet & Van Houdt]

Known Sizes Partial Information

2007

2021

2022

2024

Now -Gittins [Harlev, Yu & Scully]γ

FCFS weakly optimal [Boxma & Zwart]

strongly optimal!

strongly optimal!

Existing work

9

Our contributions

10

New policy: -Gittins!γ

Theorem

 -Gittins is strongly optimal, γ
Cγ-Gittins = inf

π
Cπ

Our contributions

10

New policy: -Gittins!γ

Theorem

 -Gittins is strongly optimal, γ
Cγ-Gittins = inf

π
Cπ

 P[Tπ > x] ∼ Cπe−γx

(x → ∞)

Practice: what are the design takeaways?

Our contributions

10

New policy: -Gittins!γ

Theorem

 -Gittins is strongly optimal, γ
Cγ-Gittins = inf

π
Cπ

 P[Tπ > x] ∼ Cπe−γx

(x → ∞)

Practice: what are the design takeaways?

Our contributions

10

Theory: why was this hard to discover?

New policy: -Gittins!γ

Theorem

 -Gittins is strongly optimal, γ
Cγ-Gittins = inf

π
Cπ

 P[Tπ > x] ∼ Cπe−γx

(x → ∞)

Practice: what are the design takeaways?

Our contributions

10

Theory: why was this hard to discover?

New policy: -Gittins!γ

Theorem

 -Gittins is strongly optimal, γ
Cγ-Gittins = inf

π
Cπ

 P[Tπ > x] ∼ Cπe−γx

(x → ∞)

What is -Gittins?γ

11

What is a boost policy?

What is -Gittins?γ

11

S = 5

What is a boost policy?

boosted arrival time
= arrival time - boost(job)

arrival time

What is -Gittins?γ

0
t

11

S = 5

What is a boost policy?

boosted arrival time
= arrival time - boost(job)

S = 5

arrival timeboosted
arrival time

What is -Gittins?γ

0
t

11

S = 5

What is a boost policy?

boosted arrival time
= arrival time - boost(job)

S = 5

arrival timeboosted
arrival time

boost policy: serve jobs in order of boosted arrival time

What is -Gittins?γ

0
t

11

S = 5

What is a boost policy?

boosted arrival time
= arrival time - boost(job)

S = 5

arrival timeboosted
arrival time

boost(size) in
[Yu & Scully, 2024]

boost policy: serve jobs in order of boosted arrival time

What is -Gittins?γ

0
t

11

S = 2S = 5

boosted arrival time
= arrival time - boost(job)

0
t

12

What is -Gittins?γ

S = 2S = 5S = 5S = 2

boosted arrival time
= arrival time - boost(job)

0
t

12

What is -Gittins?γ

boosted arrival time
= arrival time - boost(job)

0
t

13

What is -Gittins?γ

boosted arrival time
= arrival time - boost(job)

0
t

13

What is -Gittins?γ

boosted arrival time
= arrival time - boost(job)

boost(state)

0
t

13

What is -Gittins?γ

boosted arrival time
= arrival time - boost(job)

boost(state)

0
t

13

What is -Gittins?γ

changes with service

boosted arrival time
= arrival time - boost(job)

boost(state)

0
t

13

What is -Gittins?γ

changes with service

boosted arrival time
= arrival time - boost(job)

boost(state)

0
t

13

What is -Gittins?γ

changes with service

boosted arrival time
= arrival time - boost(job)

boost(state)

0
t

13

What is -Gittins?γ

changes with service

-Gittins: policy with boost(state) log(Gittins index)γ = 1
γ

0
t

13

What is -Gittins?γ

changes with service

-Gittins: policy with boost(state) log(Gittins index)γ = 1
γ

from multi-armed bandit literature
(but discounting inflation)→

0
t

13

What is -Gittins?γ

changes with service

What does priority under -Gittins look like?γ

14

(Classical) Unknown Size

{10, 60, 140}S ∼ Unif

What does priority under -Gittins look like?γ

10 states 50 states 80 states

14

(Classical) Unknown Size

{10, 60, 140}S ∼ Unif

What does priority under -Gittins look like?γ

20

20 40 60 80 100 120 140

attained
service

boost

0

10 states 50 states 80 states

14

(Classical) Unknown Size

{10, 60, 140}S ∼ Unif

What does priority under -Gittins look like?γ

20

20 40 60 80 100 120 140

attained
service

boost

0

10 states 50 states 80 states

14

(Classical) Unknown Size

{10, 60, 140}S ∼ Unif

What does priority under -Gittins look like?γ

20

20 40 60 80 100 120 140

attained
service

boost

0

10 states 50 states 80 states

14

Partial Information

{10, 60, 140}
w/ size known after 10 units service

S ∼ Unif

15

What does priority under -Gittins look like?γ

Partial Information

{10, 60, 140}
w/ size known after 10 units service

S ∼ Unif

10 states
50 states

130 states

15

What does priority under -Gittins look like?γ

Partial Information

{10, 60, 140}
w/ size known after 10 units service

S ∼ Unif

20

20 40 60 80 100 120 140

attained
service

boost

0

10 states
50 states

130 states

15

What does priority under -Gittins look like?γ

Partial Information

{10, 60, 140}
w/ size known after 10 units service

S ∼ Unif

20

20 40 60 80 100 120 140

attained
service

boost

0

10 states
50 states

130 states

if this seems too
complicated…

15

What does priority under -Gittins look like?γ

We can ignore boost increases

16

We can ignore boost increases
20

20 40 60 80 100 120 140

attained
service

boost

0

16

We can ignore boost increases
20

20 40 60 80 100 120 140

attained
service

boost

0

20

20 40 60 80 100 120 140

attained
service

boost

0

16

use worst ever boost

We can ignore boost increases
20

20 40 60 80 100 120 140

attained
service

boost

0

20

20 40 60 80 100 120 140

attained
service

boost

0

same asymptotic
guarantee!

16

use worst ever boost

We can ignore boost increases

20

20 40 60 80 100 120 140

attained
service

boost

0

20

20 40 60 80 100 120 140

attained
service

boost

0

20

20 40 60 80 100 120 140

attained
service

boost

0

20

20 40 60 80 100 120 140

attained
service

boost

0

same asymptotic
guarantee!

16

use worst ever boost

We can ignore boost increases

20

20 40 60 80 100 120 140

attained
service

boost

0

20

20 40 60 80 100 120 140

attained
service

boost

0

20

20 40 60 80 100 120 140

attained
service

boost

0

20

20 40 60 80 100 120 140

attained
service

boost

0

same asymptotic
guarantee!

16What are the takeaways for designing systems?

use worst ever boost

If you want to minimize the tail of response time:

High level takeaways for designing systems

17

If you want to minimize the tail of response time:

1. priority should depends on both arrival time and job state

High level takeaways for designing systems

17

If you want to minimize the tail of response time:

1. priority should depends on both arrival time and job state

2. priority big initial boost, then decrease based on state≈

High level takeaways for designing systems

17

If you want to minimize the tail of response time:

1. priority should depends on both arrival time and job state

2. priority big initial boost, then decrease based on state≈

3. priority can also increase based on state, but times where it
decreases are more important

High level takeaways for designing systems

17

If you want to minimize the tail of response time:

1. priority should depends on both arrival time and job state

2. priority big initial boost, then decrease based on state≈

3. priority can also increase based on state, but times where it
decreases are more important

4. can use any information model,
but more information better performance⟹

High level takeaways for designing systems

17

Practice: what are the design takeaways?

Our contributions

18

New policy: -Gittins!γ

Theorem

 -Gittins is strongly optimal, γ
Cγ-Gittins = inf

π
Cπ

Practice: what are the design takeaways?

Our contributions

18

Theory: why was this hard to discover?

New policy: -Gittins!γ

Theorem

 -Gittins is strongly optimal, γ
Cγ-Gittins = inf

π
Cπ

Practice: what are the design takeaways?

Our contributions

18

Theory: why was this hard to discover?

New policy: -Gittins!γ

Theorem

 -Gittins is strongly optimal, γ
Cγ-Gittins = inf

π
Cπ

boost log(Gittins index)= 1
γ

Practice: what are the design takeaways?

Our contributions

18

Theory: why was this hard to discover?

New policy: -Gittins!γ

Theorem

 -Gittins is strongly optimal, γ
Cγ-Gittins = inf

π
Cπ

Why are we only
realizing that Gittins is

good for tails now?

boost log(Gittins index)= 1
γ

Optimizing tails as a restless bandit problem

19

Optimizing tails as a restless bandit problem

19

arm states can change when out of service

Optimizing tails as a restless bandit problem

Can view as:P[Tπ > x]

E[cost of job] when cost is 1(Tπ > x)

19

arm states can change when out of service

Optimizing tails as a restless bandit problem

Can view as:P[Tπ > x]

E[cost of job] when cost is 1(Tπ > x)

restless process

19

arm states can change when out of service

Optimizing tails as a restless bandit problem

Can view as:P[Tπ > x]

E[cost of job] when cost is 1(Tπ > x)

restless process

restless bandits are hard

19

arm states can change when out of service

Optimizing tails as a restless bandit problem

Can view as:P[Tπ > x]

E[cost of job] when cost is 1(Tπ > x)

restless process

restless bandits are hard

results typically only for “large-system limit”

19

arm states can change when out of service

Optimizing tails as a restless bandit problem

Can view as:P[Tπ > x]

E[cost of job] when cost is 1(Tπ > x)

restless process

restless bandits are hard

Gittins was designed specifically for non-restless bandits

results typically only for “large-system limit”

19

arm states can change when out of service

Optimizing tails as a restless bandit problem

Can view as:P[Tπ > x]

E[cost of job] when cost is 1(Tπ > x)

restless process

restless bandits are hard

Gittins was designed specifically for non-restless bandits

results typically only for “large-system limit”

19

arm states can change when out of service

for optimizing asymptotic behavior of ,

correct choice for “cost of job” is

P[Tπ > x]
eγTπ

Optimizing tails as a restless bandit problem

Can view as:P[Tπ > x]

E[cost of job] when cost is 1(Tπ > x)

restless process

restless bandits are hard

Gittins was designed specifically for non-restless bandits

results typically only for “large-system limit”

19

arm states can change when out of service

for optimizing asymptotic behavior of ,

correct choice for “cost of job” is

P[Tπ > x]
eγTπ

MAB with arrivals
(discounting inflation)→

20

Optimizing tails as a multi-armed bandit with arrivals

Arm 1: Arm 2: Arm 3:
light-tailed

M/G random
arrivals

Gittins is optimal for multi-armed bandits with arrivals

20

Optimizing tails as a multi-armed bandit with arrivals

Arm 1: Arm 2: Arm 3:
light-tailed

M/G random
arrivals

Gittins is optimal for multi-armed bandits with arrivals

…but only if arrivals are time-homogenous

20

Optimizing tails as a multi-armed bandit with arrivals

Arm 1: Arm 2: Arm 3:
light-tailed

M/G random
arrivals

Gittins is optimal for multi-armed bandits with arrivals

…but only if arrivals are time-homogenous

Goal: minimize E[eγTπ]

20

Optimizing tails as a multi-armed bandit with arrivals

Arm 1: Arm 2: Arm 3:
light-tailed

M/G random
arrivals

Gittins is optimal for multi-armed bandits with arrivals

…but only if arrivals are time-homogenous

Goal: minimize E[eγTπ] = E[e−γAeγDπ]

A: arrival time
: departure timeDπ

Goal: minimize E[eγTπ]

20

Optimizing tails as a multi-armed bandit with arrivals

Arm 1: Arm 2: Arm 3:
light-tailed

M/G random
arrivals

Gittins is optimal for multi-armed bandits with arrivals

…but only if arrivals are time-homogenous

Goal: minimize E[eγTπ] = E[e−γAeγDπ]

A: arrival time
: departure timeDπ

: job-specific cost
: inflation factor

e−γA

eγDπ

Goal: minimize E[eγTπ]

20

Optimizing tails as a multi-armed bandit with arrivals

Arm 1: Arm 2: Arm 3:
light-tailed

M/G random
arrivals

Gittins is optimal for multi-armed bandits with arrivals

…but only if arrivals are time-homogenous

Goal: minimize E[eγTπ] = E[e−γAeγDπ]

A: arrival time
: departure timeDπ

: job-specific cost
: inflation factor

e−γA

eγDπ

Goal: minimize E[eγTπ]

job-specific costs depends on arrival time time-inhomogeneous arrivals→

20

Optimizing tails as a multi-armed bandit with arrivals

Arm 1: Arm 2: Arm 3:
light-tailed

M/G random
arrivals

Gittins is optimal for multi-armed bandits with arrivals

…but only if arrivals are time-homogenous

Goal: minimize E[eγTπ] = E[e−γAeγDπ]

A: arrival time
: departure timeDπ

: job-specific cost
: inflation factor

e−γA

eγDπ

Goal: minimize E[eγTπ]

job-specific costs depends on arrival time time-inhomogeneous arrivals→

doesn’t seem like
Gittins should work…

20

Optimizing tails as a multi-armed bandit with arrivals

Arm 1: Arm 2: Arm 3:
light-tailed

M/G random
arrivals

Gittins is optimal for multi-armed bandits with arrivals

…but only if arrivals are time-homogenous

[Yu & Scully, 2024]:
can pretend

there are no arrivals

Goal: minimize E[eγTπ] = E[e−γAeγDπ]

A: arrival time
: departure timeDπ

: job-specific cost
: inflation factor

e−γA

eγDπ

Goal: minimize E[eγTπ]

job-specific costs depends on arrival time time-inhomogeneous arrivals→

doesn’t seem like
Gittins should work…

server idleserver idle

Ignoring arrivals in the -Boost analysisγ

batch problem:

S = 2 S = 5 S = 4 S = 1 S = 1

S = 2 S = 5 S = 4 S = 1

0
t

busy period

21

[Yu & Scully,
2024]

server idleserver idle

Ignoring arrivals in the -Boost analysisγ

batch problem:

S = 2 S = 5 S = 4 S = 1 S = 1

S = 2 S = 5 S = 4 S = 1

0
t

busy period

-Boost solves the
batch problem!

γ

21

[Yu & Scully,
2024]

batch problem:

22

Ignoring arrivals in the -Gittins analysis?γ

Goal: minimize E[eγTπ] = E[e−γAeγDπ]

batch problem:

22

Ignoring arrivals in the -Gittins analysis?γ

Goal: minimize E[eγTπ] = E[e−γAeγDπ]

multi-armed bandit
problem

batch problem:

22

Ignoring arrivals in the -Gittins analysis?γ

Goal: minimize E[eγTπ] = E[e−γAeγDπ]

Solution: serve job with greatest Gittins(cost, state)multi-armed bandit
problem

batch problem:

22

Ignoring arrivals in the -Gittins analysis?γ

Goal: minimize E[eγTπ] = E[e−γAeγDπ]

Solution: serve job with greatest Gittins(cost, state)multi-armed bandit
problem

Gittins(cost, state) =
cost Gittins(1, state) ⋅

batch problem:

22

Ignoring arrivals in the -Gittins analysis?γ

Goal: minimize E[eγTπ] = E[e−γAeγDπ]

Solution: serve job with greatest Gittins(cost, state)multi-armed bandit
problem

Gittins(cost, state) =
cost Gittins(1, state) ⋅

log(Gittins(, state)) = log(Gittins(1, state))− 1
γ e−γA A− 1

γ

batch problem:

22

Ignoring arrivals in the -Gittins analysis?γ

Goal: minimize E[eγTπ] = E[e−γAeγDπ]

Solution: serve job with greatest Gittins(cost, state)multi-armed bandit
problem

Gittins(cost, state) =
cost Gittins(1, state) ⋅

log(Gittins(, state)) = log(Gittins(1, state))− 1
γ e−γA A− 1

γ

boost log(Gittins)= 1
γ

batch problem:

22

Ignoring arrivals in the -Gittins analysis?γ

Goal: minimize E[eγTπ] = E[e−γAeγDπ]

Solution: serve job with greatest Gittins(cost, state)multi-armed bandit
problem

Gittins(cost, state) =
cost Gittins(1, state) ⋅

log(Gittins(, state)) = log(Gittins(1, state))− 1
γ e−γA A− 1

γ

boost log(Gittins)= 1
γ

this is -Gittins!γ

server idleserver idle

batch problem:

0
t

busy period

23

Ignoring arrivals in the -Gittins analysis?γ

server idleserver idle

batch problem:

job sizes may be correlated
when sampled as busy period

0
t

busy period

23

Ignoring arrivals in the -Gittins analysis?γ

server idleserver idle

batch problem:

job sizes may be correlated
when sampled as busy period

Gittins is no longer optimal…

0
t

busy period

23

Ignoring arrivals in the -Gittins analysis?γ

server idleserver idle

batch problem:

job sizes may be correlated
when sampled as busy period

Gittins is no longer optimal…

0
t

busy period

23

Ignoring arrivals in the -Gittins analysis?γ

Our approach
Weber’s [1992] economic proof of
 Gittins’ optimality but quantitative

In summary

24

Theory: why was this hard to discover?

why is it surprising that
Gittins is the right choice?

In summary

•initially looks like restless bandit: hard, needs different tools

24

Theory: why was this hard to discover?

why is it surprising that
Gittins is the right choice?

In summary

•initially looks like restless bandit: hard, needs different tools

•MAB with arrivals: have time-inhomogeneous arrivals

24

Theory: why was this hard to discover?

why is it surprising that
Gittins is the right choice?

In summary

•initially looks like restless bandit: hard, needs different tools

•MAB with arrivals: have time-inhomogeneous arrivals

•ignoring arrivals: busy period batch problem leads to correlation→

24

Theory: why was this hard to discover?

why is it surprising that
Gittins is the right choice?

In summary

•initially looks like restless bandit: hard, needs different tools

•MAB with arrivals: have time-inhomogeneous arrivals

•ignoring arrivals: busy period batch problem leads to correlation→

quantitative economic argument!

24

Theory: why was this hard to discover?

why is it surprising that
Gittins is the right choice?

In summary

If you want to minimize the tail of response time:

1. priority should depends on both arrival time and job state
2. priority big initial boost, then decrease based on state
3. priority can also increase based on state, but times where it

decreases are more important
4. can use any information model,

but more information better performance

≈

⟹ Please reach out!
ah843@cornell.edu

-Gittins
boost(state) log(Gittins index)

γ
= 1

γ

strongly optimal!

mailto:ah843@cornell.edu

server idleserver idle

26

bonus: why might there be job size correlations?

0
t

batch problem:

a1 = 0 a2 = ϵ2 a3 = 1

Unif{1, ε}
Unif{1, ε}

S1

Unif{1, ε}
S2

Unif{1, ε}
S3

a1 = 0 a2 = ϵ2 a3 = 1

Unif{1, ε}
S1

Unif{1, ε}
S2

Unif{1, ε}
S3

server idleserver idle

26

Example

3 jobs: a1 = 0, a2 = ε2, a3 = 1
Let and ε ≪ 1 S = Unif{1, ε}

If then S1 = ε S2 = 1

bonus: why might there be job size correlations?

0
t

batch problem:

a1 = 0 a2 = ϵ2 a3 = 1

Unif{1, ε}
Unif{1, ε}

S1

Unif{1, ε}
S2

Unif{1, ε}
S3

a1 = 0 a2 = ϵ2 a3 = 1

Unif{1, ε}
S1

Unif{1, ε}
S2

Unif{1, ε}
S3

server idleserver idle

26

Example

3 jobs: a1 = 0, a2 = ε2, a3 = 1
Let and ε ≪ 1 S = Unif{1, ε}

If then S1 = ε S2 = 1

bonus: why might there be job size correlations?

0
t

batch problem:

busy period

a1 = 0 a2 = ϵ2 a3 = 1

Unif{1, ε}
Unif{1, ε}

S1

Unif{1, ε}
S2

Unif{1, ε}
S3

a1 = 0 a2 = ϵ2 a3 = 1

Unif{1, ε}
S1

Unif{1, ε}
S2

Unif{1, ε}
S3

