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distribution S 

Poisson arrivals

captures many information models in a single result 

What is the problem?
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serverqueue

light-tailed 
M/G random 

arrivals

Goal: scheduling policy  that minimizes asymptotic behavior of the 
tail of response time, 

π
P[Tπ > x]

 = response time under policy  
(“total time in system”)

Tπ π

What is the problem?
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probability

response time tail
P[Tπ > x]

asymptotic behavior
 (roughly)Cπe−γπx

when S is 
light-tailed

decay rate of γπ = π
tail constant of Cπ = π

Weak optimality: 
optimal γπ

Strong optimality: 
optimal  and γπ Cπ

Heavy-tailed S: 
PS & LAS have optimal 

asymptotic behavior 
[Wierman & Zwart 2012, 

Yu & Scully 2024]
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prioritize 

short jobs

don’t starve 

long jobs

Does any policy in the literature balance this?

Most policies: priority based on job’s size or attained service

not flexible enough!

Managing the tradeoff

             [Scully & van Kreveld, 2024]: 
  

FCFS is only SOAP policy that is even 
weakly optimal.
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FCFS weakly optimal [Boxma & Zwart]

Nudge [Grosof et al]

-Boost [Yu & Scully, SIGMETRICS 2024]γ

Nudge-K [Van Houdt]

Nudge-M [Charlet & Van Houdt]

Known Sizes Partial Information

2007

2021

2022

2024

Now -Gittins [Harlev, Yu & Scully]γ

FCFS weakly optimal [Boxma & Zwart]

strongly optimal!

strongly optimal!

Existing work
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boosted arrival time 
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S = 5

arrival timeboosted 
arrival time

boost(size) in  
[Yu & Scully, 2024]

boost policy: serve jobs in order of boosted arrival time
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-Gittins: policy with boost(state)  log(Gittins index)γ = 1
γ

from multi-armed bandit literature 
(but discounting  inflation)→

0
t

13

What is -Gittins?γ

changes with service
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Partial Information 

{10, 60, 140} 
w/ size known after 10 units service

S ∼ Unif

20

20 40 60 80 100 120 140

attained 
service

boost

0

10 states
50 states

130 states

if this seems too 
complicated…
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If you want to minimize the tail of response time:

1. priority should depends on both arrival time and job state

2. priority  big initial boost, then decrease based on state≈

3. priority can also increase based on state, but times where it 
decreases are more important

4. can use any information model,  
but more information  better performance⟹

High level takeaways for designing systems
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Practice: what are the design takeaways?

Our contributions

18

Theory: why was this hard to discover?

New policy: -Gittins!γ

Theorem 

 -Gittins is strongly optimal, γ
Cγ-Gittins = inf

π
Cπ

Why are we only 
realizing that Gittins is 

good for tails now?

boost log(Gittins index)= 1
γ
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19

arm states can change when out of service

for optimizing asymptotic behavior of , 

correct choice for “cost of job” is 

P[Tπ > x]
eγTπ

MAB with arrivals 
(discounting  inflation)→
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Arm 1: Arm 2: Arm 3:
light-tailed 

M/G random 
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Gittins is optimal for multi-armed bandits with arrivals

…but only if arrivals are time-homogenous

[Yu & Scully, 2024]: 
can pretend 

there are no arrivals
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Ignoring arrivals in the -Boost analysisγ

batch problem:

S = 2 S = 5 S = 4 S = 1 S = 1

S = 2 S = 5 S = 4 S = 1

0
t

busy period

-Boost solves the 
batch problem!

γ

21

[Yu & Scully, 
2024]
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Ignoring arrivals in the -Gittins analysis?γ

Our approach 
Weber’s [1992] economic proof of 
 Gittins’ optimality but quantitative
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In summary

•initially looks like restless bandit: hard, needs different tools

•MAB with arrivals: have time-inhomogeneous arrivals

•ignoring arrivals: busy period  batch problem leads to correlation→

quantitative economic argument!
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In summary

If you want to minimize the tail of response time:

1. priority should depends on both arrival time and job state 
2. priority  big initial boost, then decrease based on state 
3. priority can also increase based on state, but times where it 

decreases are more important 
4. can use any information model,  

but more information  better performance

≈

⟹ Please reach out! 
ah843@cornell.edu

-Gittins 
boost(state)  log(Gittins index)

γ
= 1

γ

strongly optimal!

mailto:ah843@cornell.edu
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bonus: why might there be job size correlations?

0
t

batch problem:

a1 = 0 a2 = ϵ2 a3 = 1

Unif{1, ε}
Unif{1, ε}

S1

Unif{1, ε}
S2

Unif{1, ε}
S3

a1 = 0 a2 = ϵ2 a3 = 1

Unif{1, ε}
S1

Unif{1, ε}
S2

Unif{1, ε}
S3
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