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1. INTRODUCTION

We consider the classic problem of minimizing mean response
time in the M/G/1 queue. The optimal scheduling policy
depends on the amount of information the scheduler has
about job sizes (service times).

(a) When sizes are known, Shortest Remaining Processing
Time (SRPT) is optimal.

(b) When sizes are unknown but drawn from a known
distribution, the Gittins policy is optimal [3, 8.

(c) When no information about sizes or their distribution
is known, Randomized Multi-Level Feedback (RMLF)
achieves the best known competitive ratio of O(log ﬁ),
where p € (0,1) is the load [1, 2, 4]

In systems with unknown job sizes, the setting that often
arises is one between (b) and (c). For example, we might
not know job sizes or their distribution, but we may have
information on past jobs’ sizes, or be able to learn the distri-
bution from future jobs’ sizes. Motivated by this setting, we
study the setting in which the scheduler has access only to a
finite number of i.i.d. samples from the job size distribution.
We ask: can the scheduler construct a near-optimal policy
from finitely many samples?

1.1 Our Work: Empirical Gittins Policy

The Gittins policy uses the job size distribution to construct a
priority rule, then uses that rule to schedule jobs. Specifically,
this priority rule is a rank function [9], which maps a job’s age
(attained service) to its rank (lower rank is better priority).
One can thus view the Gittins policy as a map

(job size distribution, age) — rank.

If we only have access to finitely many job size samples
instead of the true job size distribution, a natural approach
is to use the same map above, but plugging in the empirical
distribution instead of the true distribution. We call this the
empirical Gittins policy. This policy is simple and intuitive,
but its performance relative to the optimum is unclear.

We present the first analysis of M/G/1 scheduling when the
scheduler has only sample access to the job size distribution.
In the finite-support setting, we prove that the empirical
Gittins policy achieves (1 + €)-approximate mean response
time with probability at least 1 — § when given Q(E% log %)
samples (Section 2.2). The main technical step of our proof is
a generic result about the Gittins policy with a misspecified
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job size distribution. Roughly speaking, we show that if
the misspecified density function is within a « factor of the
true density function, then the resulting misspecified Gittins
policy is within a v? factor of optimal (Section 2.1).

We conclude by giving empirical evidence suggesting that
empirical Gittins may perform well even with continuous job
size distributions, though analyzing this case theoretically
remains an open problem (Section 3).

1.2 Related Work: Learning and Scheduling

Recent work at the intersection of learning and queueing
has focused on developing scheduling policies that adapt
to unknown or changing environments [6, 10, 11]. These
approaches are often motivated by the idea that real-world
systems evolve over time, requiring policies that can learn
from experience and adjust accordingly.

Our work is driven by the same high-level goal, namely
designing scheduling policies that adapt well to changing
environments, but differs in two key ways. First, prior work
[6, 10, 11] assumes Markovian service (i.e. exponential or
geometric job sizes) with multiple job classes, which means
the learning problem reduces to estimating a vector of values.
In contrast, we work with general job size distributions with
no parametric assumptions. Second, prior work formulates an
online learning problem, using transient analyses to obtain
regret, bounds. In contrast, we study a “one-shot” problem:
we use a finite number of samples to construct a scheduling
policy, then evaluate that policy’s steady-state performance.
This formulation is certainly simpler than online learning,
but it allows us to use modern queueing tools [7, 8] to study
the more complicated setting of general job size distributions.

2. RESULTS FOR FINITE-SUPPORT JOB
SIZE DISTRIBUTIONS

We analyze the M/G/1 queue with job sizes drawn i.i.d. from
distribution S. We study nonclairvoyant scheduling policies,
meaning policies that do not use information about any
individual job’s size. We assume a standard overhead-free
preempt-resume model. We assume load p < 1 for stability.

All of the policies we consider are SOAP policies [7, 9].
These are policies that schedule jobs using a rank function
r : R4 — R which maps each job’s age a (a.k.a. attained
service), namely the amount of time the job has been served
so far, to a rank r(a), which is a number representing a
priority (lower is better). All SOAP policies follow the same
general scheduling rule: at every moment in time, serve the
job with lowest rank. In this section, ties for lowest rank can
be broken arbitrarily (but we revisit this in Section 3).

The Gittins rank is defined in terms of an efficiency func-



tion J(a,b), which captures how advantageous it is to serve a
job of age a until it reaches age b > a. Formally, the Gittins
rank is given by:

TGittins(a) = l}r>1£ J(a’7 b)7 (21)

E[min(S,b) —a | S > a]
P[S<b|S>a

To prove guarantees for empirical Gittins, we use a struc-
tural result from Scully [7]: any SOAP policy whose rank func-
tion approximates the true Gittins rank pointwise achieves
near-optimal performance.

Theorem 2.1 (corollary of [7, Theorem 16.5]). Consider
an M/G/1 queue in which the scheduler does not observe
individual job sizes. Let TGittins denote the Gittins rank func-
tion derived from the true job size distribution. Suppose an
age-based priority policy ™ has rank function r. satisfying

where J(a,b) = (2.2)

1
— TGittins (@) < 7x(a) < ¥ raistins(a) for all ages a
ol

has mean response time within a factor of v* of optimal:
E[Tx] < v’E[TGittins)-

We will show that given enough samples, the empirical
Gittins policy has a high probability of having a rank function
within a multiplicative factor of the true Gittins rank. By
Theorem 2.1, this will imply a bound on the response time
of the empirical Gittins policy. We do this in two steps:

e (Section 2.1) We show that an “approximately correct”
job size distribution results in an “approximately cor-
rect” Gittins rank function.

e (Section 2.2) We show that with enough samples, the
empirical distribution is “approximately correct” with
high probability.

2.1 Gittins with Misspecified Size Distribution

Consider two finite-support PMFs p; and p2. The intuition
is that p; is the true PMF of S and p2 is a misspecified
PMF, but most of our intermediate results will treat them
symmetrically. Throughout, let r; and J; be the Gittins rank
functions (2.1) and efficiency functions (2.2), respectively,
when S is the distribution with PMF p;.

Lemma 2.2. Suppose
< r(s)
pi(s)

for some constants 0 < 8 < « and for all s € supp(p1). Then
forall 0 < a < b,

B < J2(a,b) @
a = Ji(a,b) — B’

Proof. By assumption, for all s in the support of pi, we have
2ssa P1(s) - (min(s, b) — a)
Za<s§bpl (S)
2 s5a P1(8) - (min(s, b) — a)
Za<s§b pQ(S)
- (min(s, b) —
8 Sane) i) ) 5,
« Za<s§b pQ(S) «Q

and symmetrically, J2(a,b) > ng (a,b). Combining yields
the desired bounds. O

Jl (a, b) =

>pB-

Since the Gittins rank is defined as r(a) = infy~, J(a,b),
the efficiency function bounds from Lemma 2.2 translate
directly into bounds on the rank functions r1 and r2. We
now formalize this:

Lemma 2.3. If the efficiency functions J1 and J2 have
B < J2(a,b) @
a Jl(a', b) - B

for all ordered pairs of ages a < b, then their corresponding
Gittins ranks satisfy

for all ages a.

Proof. Let bi(a) and b3(a) be the minimizers of Ji(a, b) and
Ja(a, b) respectively. Then

ri(a) = Ji(a,bi(a)) < Ji(a,bs(a))

< BJQ(CLJ);(Q)) = Erg(a),

and, symmetrically, r2(a) < Fr1(a). O

Together, Lemma 2.2 and Lemma 2.3 immediately imply
our first main result below.

Theorem 2.4. Let pi,p2,71,72 be as defined at the start
of this section, and let E[T; ;] be the mean response time
in an M/G/1 whose job size distribution has PMF p; and
is using the SOAP policy with rank function r; (the Git-
tins rank function from PMF p;). Suppose that there exist
constants 0 < B < a such that for all s € supp(p1),

p2(s)
B < m <a.

Then

2
E[T} 2] < (9) E[T}1].
B

Remark 2.5. All of the results in this section extend beyond
the finite-support case. To generalize the result, view p1 and
p2 as density functions of two job size distributions with
respect to a common measure p (e.g. the Lebesgue measure).
Then all of the statements and proofs generalize by replacing
sums with integrals with respect to u. In fact, p1 and p2
just need to be densities of finite measures, not necessarily
probability measures.

2.2 Performance Bound for Empirical Gittins

We now apply Theorem 2.4 to analyze Empirical Gittins.
Let ptrue be the PMF of the true size distribution S, and let
Perp be the random PMF of the empirical distribution from
n samples from S. This means that for all s,

N Pemp(s) ~ Binomial(n, ptrue(s))- (2.3)

We write E[Ttrue] for the mean response time of the true
Gittins policy and E[Temp] for that of empirical Gittins.

Theorem 2.6 (Performance guarantee for empirical Gittins).
Let §,e € (0,1). The empirical Gittins policy achieves

1+¢

P Eome | Pons] < ( 1

>1-6

)Q[E[Tm]




as long as the number of samples satisfies

2+¢ 2k
= qe? log(F)’

where k = |supp(peruc)| and ¢ = Mingesupp(pere) Pirue(s)-

1+e
1—e

Because ( )2 ~ 14 4e for small ¢, this implies empirical
Gittins with Q(Ei2 log %) samples is a (1 + &)-approximation

for mean response time with probability at least 1 — §.

Proof of Theorem 2.6. Let supp = supp(perue) for brevity.
By (2.3) and the Chernoff bound, for all s € supp,

o[ e pa(s))
Pee(s) 2+

Applying the union bound and recalling the definitions of ¢
and k from the theorem statement yields

— 1’ > E] < 2exp(f

Pemp(8) e?ng
P|3s csupp: | —22 — 1| > | < 2kexp| — .
{ PP e (s) ‘ } B p( 2+e
Therefore, if n > ijf log(%), then

P{‘v’sésuppzpemip(s)e[l—e,l—&—s]} >1-4,
ptrue(s)

from which the result follows by Theorem 2.4. O

3. OPEN QUESTION: CONTINUOUS JOB
SIZE DISTRIBUTIONS

The results in Section 2.2 depend upon properties such the
number of support points k and the minimum point mass
probability g. The bounds thus do not make sense for con-
tinuous distributions, and naive discretization arguments
seem unlikely to work well, as they would lead to larger k
and smaller ¢ as the discretization gets finer, worsening the
bound in Theorem 2.6.

Nevertheless, we observe in simulation that with enough
samples, empirical Gittins performs well for continuous distri-
butions, as Figure 3.1 shows for two examples: one (truncated)
light-tailed in (a), and one (truncated) heavy-tailed in (b).
Each histogram in Figure 3.1 shows the mean response time
E[TLemp | Pemp) for 100 different randomly sampled empirical
distributions Pemp.

In all cases, we simulate the empirical Gittins policy with
FCEFS tie-breaking. However, the empirical Gittins rank func-
tion is undefined for ages greater than the largest observed
sample. We therefore use a “preemptive last-come-first-served
(PLCFS) fallback” [5]: jobs with age greater than the largest
observed sample have priority lower than all other jobs, and
they are prioritized from latest to earliest arrival time.
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