A Gittins Policy for Optimizing
Tail Latency

Amit Harlev Cornell CAM ﬂ . . N
A | | o —————————
j .
Joint work with : = 5 o ——

George Yu Cornell ORIE
Ziv Scully Cornell ORIE

How do we minimize delays
when job sizes are unknown?

(asymptotic) tail latency
in single server queue

How do we minimize delays
when job sizes are unknown?

Scheduling in the M/G/1

queue

SCIvVEr

Scheduling in the M/G/1

queue server

(.

Scheduling in the M/G/1

queue server

(.

Scheduling in the M/G/1

queue server

(.

Scheduling in the M/G/1

queue server

(.

S1ze {

\

—} remaining size

$

Scheduling in the M/G/1

queue

SCIvVEr

random
arrivals

S1ze {

e —————— —

\

—} remaining size

$

Scheduling in the M/G/1

queue

SCIvVEr

10

random
arrivals

S1ze {

e —————— —

\

—} remaining size

$

Scheduling in the M/G/1

queue

SCIvVEr

1

random
arrivals

S1ze {

e —————— —

\

$

Scheduling in the M/G/1

queue server

—} remaining size

12

Scheduling in the M/G/1

queue server

N~ —— — —_—

f ' I
random _ _ ‘

arrivals
| g _7
’\Uj‘

—} remaining size
size _

U

Scheduling in the M/G/1

queue server

S = size distribution
A = arrival rate (Poisson)

random
arrivals

—} remaining size
size _

U

14

Scheduling in the M/G/1

queue server

S = size distribution
A = arrival rate (Poisson)

random
arrivals

job

Scheduling: In which order should we serve jobs to minimize a desired metric?

15

queue server

T = response time

Scheduling: In which order should we serve jobs to minimize a desired metric?

16

SCIVET

17

<& Theory

® mean response time, E|[T}

1

T = response time

SCIVET

18

<& Theory

® mean response time, E|[T}

|
I

SCIVET

T = response time

19

SCIVET

T = response time
- Theory

® mean response time, E|[T}

o E[T] with unknown job sizes

20

T = response time
- Theory

® mean response time, E|[T}

o E[T] with unknown job sizes

SCIVET

21

T = response time
- Theory

® mean response time, E|[T}

o E[T] with unknown job sizes

o weighted E[T]

SCIVET

22

T = response time
- Theory

® mean response time, E|[T}

o E[T] with unknown job sizes

o weighted E[T]

SCIVET

@ Practice

23

queue server

<& Theory

® mean response time, E|[T}

T = response time
@ Practice

o tail latency, P[T > t] for large t

o E[T] with unknown job sizes

o weighted E[T]

24

SCIVET

T = response time

<& Theory

® mean response time, E|[T}

o E[T] with unknown job sizes

o weighted E[T]

@ Practice

o tail latency, P[T > t] for large t

e tail latency with unknown job sizes

25

SCIVET

T = response time
- heory D practic

® mean response time, E[T] e tail latency, P[T > t] for large t

o E[T] with unknown job sizes e tail latency with unknown job sizes

o weighted E[T]

26

queue server

, - sponse time
This talk: asymptotic tail latency

P|T >1t] as t > o @ Practice hard to analyze
with unknown job sizes!

® mean respo e tail latency, P[T > t] for large t

o E[T] with unknown job sizes ¢ tail latency with unknown job sizes

o weighted E[T]

27

What does it mean to minimize asymptotic tail latency?

28

What does it mean to minimize asymptotic tail latency?

. PIT, > 1]
K_ = sup lim

29

What does it mean to minimize asymptotic tail latency?

P[T. > 1] K_< oco: weakly optimal

K_= sup lim
gk [0 I)[T7T>,< > t]

30

What does it mean to minimize asymptotic tail latency?

P[T. > 1] K_< oco: weakly optimal

K_= sup lim

T
wr =00 PLT 7 > 1] K_= 1: strongly optimal

31

What does it mean to minimize asymptotic tail latency?

P[T. > 1] K_< oco: weakly optimal

K_= sup lim

T
wr =00 PLT 7 > 1] K_= 1: strongly optimal

Which policies are weakly optimal?

32

What does it mean to minimize asymptotic tail latency?

P[T. > 1] K_< oco: weakly optimal

K_= sup lim

T
wr =00 PLT 7 > 1] K_= 1: strongly optimal

Which policies are weakly optimal?

Heavy-Tailed Size Distribution

® PS

* LAS

® SRPT
* PLCES

33

What does it mean to minimize asymptotic tail latency?

P[T. > 1] K_ < oo: weakly optimal

K_= sup lim

T
wr =00 PLL 7 > 1] K_= 1: strongly optimal

“P[S > x] ~ Q(x—ﬁ),, Which policies are weakly optimal?

Heavy-Tailed Size Distribution

® PS

* LAS

® SRPT
* PLCES

34

What does it mean to minimize asymptotic tail latency?

P[T. > 1] K_ < oo: weakly optimal

K_= sup lim

T
wr =00 PLL 7 > 1] K_= 1: strongly optimal

“P[S > x| ~ Q(x—ﬁ),, Which policies are weakly optimal? “P[S > x] ~ O(e—,Bx)n
Heavy-Tailed Size Distribution Light-Tailed Size Distribution
® PS
° LAS
e SRPT

* PLCES

35

What does it mean to minimize asymptotic tail latency?

P[T. > 1] K_ < oo: weakly optimal

K_= sup lim

T
wr =00 PLL 7 > 1] K_= 1: strongly optimal

“P[S > x| ~ Q(x—ﬁ),, Which policies are weakly optimal? “P[S > x] ~ O(e—,Bx)n
Heavy-Tailed Size Distribution Light-Tailed Size Distribution
o PS e FCFS
° LAS
e SRPT

* PLCES

36

What does it mean to minimize asymptotic tail latency?

P[T. > 1] K_ < oo: weakly optimal

K_= sup lim

T
wr =00 PLL 7 > 1] K_= 1: strongly optimal

“PS > x] ~ Q(x7F)” Which policies are weakly optimal? “P[S > x] ~ O(e™)”
Heavy-Tailed Size Distribution Light-Tailed Size Distribution
o PS e FCFS
e LAS e Nudge (Grosof et al. 2021)
e SRPT ® Boost (Yu & Scully 2024)

* PLCES

37

strongly
optimal

What does it mean to minimize asymptotic tail latency?

P[T. > 1] K_< oco: weakly optimal

K_= sup lim

T
wr =00 PLT 7 > 1] K_= 1: strongly optimal

Which policies are weakly optimal?

Heavy-Tailed Size Distribution Light-Tailed Size Distribution
o PS e FCFS
e LAS e Nudge (Grosof et al. 2021)
strongly

® SRPT
* PLCES

{ ® Boost (Yu & Scully 2024)

optimal

38

strongly
optimal

What does it mean to minimize asymptotic tail latency?
(without job size information)

P[T. > 1] K_< oo: weakly optimal

K_= sup lim -
¥ [— 0 [¥ > t] Kﬂ — 1: StI”OTlgly Optlmal

Which policies are weakly optimal?

Heavy-Tailed Size Distribution Light-Tailed Size Distribution
o PS e FCFS
e LAS e Nudge (Grosof et al. 2021)
strongly
e SRPT optimal { ® Boost (Yu & Scully 2024)

* PLCES

39

What does it mean to minimize asymptotic tail latency?
(without job size information)

P[T. > 1] K_< oo: weakly optimal

K_ = sup lim

T
% : — P T k t .
r*eUnknownSize 7 [>] Kn = 1: strongly optimal

Which policies are weakly optimal?

Heavy-Tailed Size Distribution Light-Tailed Size Distribution
o PS e FCFS
Zt;(t)irrfg ® LAS * Nudge (Grosof et al. 2021)
1
* SRPT f;‘t’i?fj{ e Boost (Yu & Scully 2024)

* PLCES

40

What does it mean to minimize asymptotic tail latency?
(without job size information)

P[T. > 1] K_< oo: weakly optimal

K_ = sup lim

T
rreUnknownSize 1~ Pl > 1] K_= 1: strongly optimal

Which policies are weakly optimal?

Heavy-Tailed Size Distribution Light-Tailed Size Distribution
* PS * FCFS
f;%?fg * LAS ° e (Grosof et al. 2021)

° S_ %{ Mu & Scully 2024)

* PLCES

41

Our contribution: new policy + proof of strong optimality

42

Our contribution: GittinsBoost + proof of strong optimality

How do we generalize Boost to
the unknown size setting

@

known sizes unknown sizes

lim P[T > 1] GittinsBoost

[— 0

(light-tailed)

43

Our contribution: GittinsBoost + proof of strong optimality

How do we generalize Boost to
the unknown size setting

@

known sizes unknown sizes

lim P[T > 1] GittinsBoost

[— 0

(light-tailed)
What is Boost?

44

Our contribution: GittinsBoost + proof of strong optimality

How do we generalize Boost to
the unknown size setting

@

known sizes QLOWN Sizes

How does scheduling

with unknown sizes
differ?

lim P[T > 1]

[— 0

(light-tailed)

Boost GittinsBoost

Our contribution: GittinsBoost + proof of strong optimality

known size OWN SizZes

How does scheduling

with unknown sizes
differ?

E[T]

lim P[T > ¢}

[— 00

GittinsBoost

46

Our contribution: GittinsBoost + proof of strong optimality

OWN S1zes

known size
How does scheduling

with unknown sizes
differ?

How 1s minimizing E[T]
different from minimizing
lim P[T > t]?

[— 00

lim P[T > ¢}

[— 00

GittinsBoost

Boost

47

Our contribution: GittinsBoost + proof of strong optimality

OWN S1zes

known size
How does scheduling

with unknown sizes
differ?

How 1s minimizing E[T]
different from minimizing
lim P[T > t]?

[— 00
What is Boost?

lim P[T > ¢}

[— 00

(light-tailed)

GittinsBoost

Does the technique used
to discover Boost work
with unknown sizes?

48

Our contribution: GittinsBoost + proof of strong optimality

OWN S1zes

known size
How does scheduling

with unknown sizes
differ?

How is GittinsBoost
related to Gittins?

How 1s minimizing E[T]
different from minimizing
lim P[T > t]?

[— 00

lim P[T > ¢}

[— 00

(light-tailed)

Boost GittinsBoost

Does the technique used
to discover Boost work
with unknown sizes?

What is Boost?

49

Our contribution: GittinsBoost + proof of strong optimality

OWN S1zes

known size
How does scheduling

with unknown sizes
differ?

How is GittinsBoost
related to Gittins?

How 1s minimizing E[T]
different from minimizing
lim P[T > t]?

[— 00

lim P[T > ¢}

[— 00

(light-tailed)

GittinsBoost

Does the technique used
to discover Boost work
with unknown sizes?

50

Optimizing Means vs Optimizing Tails

Minimize E|[T] Minimize P|T>t]

51

Optimizing Means vs Optimizing Tails

Minimize E|[T] Minimize P|T>t]

e Don’t want small jobs stuck
behind large job

52

Optimizing Means vs Optimizing Tails

Minimize E| T}

e Don’t want small jobs stuck
behind large job

Minimize P|T>t]

* Don’t want small jobs stuck
behind large job

53

Optimizing Means vs Optimizing Tails

Minimize E| T}

e Don’t want small jobs stuck
behind large job

Minimize P|T>t]
* Don’t want small jobs stuck

behind large job

* Don’t want large jobs to be
overly delayed

54

Optimizing Means vs Optimizing Tails

Minimize E| T}

e Don’t want small jobs stuck
behind large job

Heavy Talils:
basically doesn’t
matter

Minimize P|T>t]
* Don’t want small jobs stuck

behind large job

e Don’t want large jobs to be
overly delayed

55

Optimizing Means vs Optimizing Tails

Minimize E|[T] Minimize P|T>t]
e Don’t want small jobs stuck e Don’t want small jobs stuck
behind large job behind large job

e Don’t want large jobs to be
overly delayed

Heavy Talils:
basically doesn’t

Light Tails:
matter

very important

56

Optimizing Means vs Optimizing Tails

Minimize E|[T] Minimize P|T>t]
e Don’t want small jobs stuck e Don’t want small jobs stuck
behind large job behind large job

e Don’t want large jobs to be
overly delayed

Heavy Talils:
basically doesn’t

Light Tails:
matter

very important

Boost: a way to balance this tradeoff!

Y

What is Boost?

Boost serves jobs in order of ascending boosted arrival time:

boosted arrival time = arrival time - boost

58

What is Boost?

Boost serves jobs in order of ascending boosted arrival time:

boosted arrival time = arrival time - boost

boost is determined by boost function b(s) > 0 that maps job size to boost.

59

What is Boost?

Boost serves jobs in order of ascending boosted arrival time:

boosted arrival time = arrival time - boost

boost is determined by boost function b(s) > 0 that maps job size to boost.

(1)

60

What is Boost?

Boost serves jobs in order of ascending boosted arrival time:

boosted arrival time = arrival time - boost

boost is determined by boost function b(s) > 0 that maps job size to boost.

(1)

\ boost

61

What is Boost?

Boost serves jobs in order of ascending boosted arrival time:

boosted arrival time = arrival time - boost

boost is determined by boost function b(s) > 0 that maps job size to boost.

(1)

(2)

\ boost

62

What is Boost?

Boost serves jobs in order of ascending boosted arrival time:

boosted arrival time = arrival time - boost

boost is determined by boost function b(s) > 0 that maps job size to boost.

(1)

\ boost

63

What is Boost?

Boost serves jobs in order of ascending boosted arrival time:

boosted arrival time = arrival time - boost

boost is determined by boost function b(s) > 0 that maps job size to boost.

(1)
2) |- (3)

64

What is Boost?

Boost serves jobs in order of ascending boosted arrival time:

boosted arrival time = arrival time - boost

boost is determined by boost function b(s) > 0 that maps job size to boost.

(1)
2 |1 3)

iU G

T AN

\ boost

NV
~

What is Boost?

Boost serves jobs in order of ascending boosted arrival time:

boosted arrival time = arrival time - boost

boost is determined by boost function b(s) > 0 that maps job size to boost.

Which boost function minimizes asymptotic tail latency?

66

What is Boost?

Boost serves jobs in order of ascending boosted arrival time:

boosted arrival time = arrival time - boost

boost is determined by boost function b(s) > 0 that maps job size to boost.

Which boost function minimizes asymptotic tail latency?

choosing:

results in strongly optimal policy (Yu & Scully, 2024)

67

How 1s mini
differentgdtro

lim P[T > ¢]

I— 00

(light-tailed)

known size

How does scheduling
with unknown sizes

differ?

How 1s GittinsBoost
related to Gittins?

GittinsBoost

Does the technique used
to discover Boost work
with unknown sizes?

68

Scheduling with unknown job sizes

queue server

69

Scheduling with unknown job sizes

queue server

70

Scheduling with unknown job sizes

SCIver

queue

ﬂ|4|4|4|4|4|4|4|ﬁJ
/7

7

Scheduling with unknown job sizes

SCIver

queue

T-T-T-73777777977" T
"4

712

Scheduling with unknown job sizes

SCIver

queue

ﬁ-ﬁ-A-J-J-J-J-J-ﬁJ
"4

73

Scheduling with unknown job sizes

SCIver

queue

T-T-T-I°1°77 000
"4

74

Scheduling with unknown job sizes

SCIver

queue

LR I A A A | i B
7/

75

Scheduling with unknown job sizes

SCIver

queue

T-T7 7777 TS T
/

76

Scheduling with unknown job sizes

SCIver

queue

._.|._.|._.|._||_||_||_||_|_./.
/

77

Scheduling with unknown job sizes

queue server

]

,,________________
WA_L_L_L_bLolL_1_1_1

78

C Y R I I

Scheduling with unknown job sizes

queue server

I

state = (size, age, arrival time)

,_________________
WA_L_L_L_bLolL_1_1_1

79

C Y R I I

Scheduling with unknown job sizes

queue server

I

state = (size, age, arrival time)

SRPT: order by [size - age]

,_________________
WA_L_L_L_bLolL_1_1_1

80

C Y R I I

Scheduling with unknown job sizes

queue

SCIver

f I

state = (size, age, arrival time)

SRPT: order by [size - age]

,,________________
WAL L_L_L_olL_Ll_1_1

state = (age, arrival time)

,_________________
WA_L_L_L_bLolL_1_1_1

81

C Y R I I

Scheduling with unknown job sizes

queue server

I

S, GED GED GES GED GED _GED GED GEI GEb G G5 e e o oo o
4

state = (size, age, arrival time) state = (age, arrival time)
- - 1 better

SRPT: order by [size - age] Gittins: order by (age)

WA_L_L_L_bLolL_1_1_1

WAL L_L_L_olL_Ll_1_1

82

C Y R I I

Scheduling with unknown job sizes

queue server

f I

S, GED GED GES GED GED _GED GED GEI GEb G G5 e e o oo o
g

proxy for [size - age],
depends on size distribution

state = (agej- eeeeall€T 1S
better

state = (size, age, arrival time)

SRPT: order by [size - age] Gittins: order by (age)

WA_L_L_L_bLolL_1_1_1

WAL L_L_L_olL_Ll_1_1

83

C Y R I I

Scheduling with unknown job sizes

queue server

f I

state = (size, age, arrival time) state = (ageje

SRPT: order by [size - age] Gittins: order by (age)

Boost: order by [A - b(s)]

WAL L_L_L_olL_Ll_1_1

proxy for [size - age],
depends on size distribu

S, GED GED GES GED GED _GED GED GEI GEb G G5 e e o oo o
g

tion

ceemeef1CT 1S
better

WA_L_L_L_bLolL_1_1_1

84

C Y R I I

Scheduling with unknown job sizes

queue server

f I

state = (size, age, arrival time) state = (ageje

SRPT: order by [size - age] Gittins: order by (age)

Boost: order by [A - b(s)] @ GittinsBoost:

order by [A - b(age)]

WAL L_L_L_olL_Ll_1_1

proxy for [size - age],
depends on size distribu

S, GED GED GES GED GED _GED GED GEI GEb G G5 e e o oo o
g

tion

ceemeef1CT 1S
better

WA_L_L_L_bLolL_1_1_1

85

C Y R I I

Scheduling with unknown job sizes

queue server

| I

S, GED GED GES GED GED _GED GED GEI GEb G G5 e e o oo o
g

proxy for [size - age],
depends on size distribution

state = (agej- eeeeall€T 1S
better
Gittins: order by (age)
Yo Proxy for b
@ ciistoost

state = (size, age, arrival time)

SRPT: order by [size - age]

Boost: order by [A - b(s)]

WA_L_L_L_bLolL_1_1_1

WAL L_L_L_olL_Ll_1_1

order by [A - b(age)]

86

The GittinsBoost policy

defined by a boost function b(x) > 0 that maps age to boost

87

The GittinsBoost policy

defined by a boost function b(x) > 0 that maps age to boost

-1l_1_1

vl L_L_L_L_L

88

The GittinsBoost policy

defined by a boost function b(x) > 0 that maps age to boost

-1l_1_1

W_L_L_L_L_L

89

-L_1_1

W_L_L_L_L_L

The GittinsBoost policy

defined by a boost function b(x) > 0 that maps age to boost

90

.L_L_L_L_L_.L_.L_.I.

The GittinsBoost policy

defined by a boost function b(x) > 0 that maps age to boost

-L

vl_L_L_L_

O

91

The GittinsBoost policy

defined by a boost function b(x) > 0 that maps age to boost

L

vl_L_L_L

@l

92

The GittinsBoost policy

defined by a boost function b(x) > 0 that maps age to boost

93

The GittinsBoost policy

defined by a boost function b(x) > 0 that maps age to boost

1
1_1

I_L_L_L_L_L_.L_ -
G L

94

The GittinsBoost policy

defined by a boost function b(x) > 0 that maps age to boost

— —

95

The GittinsBoost policy

defined by a boost function b(x) > 0 that maps age to boost

| —

| —

: |

-

-
|
l|_l

.L_L_L_L_L_.L_.I._.I.

job completes

96

The GittinsBoost policy

defined by a boost function b(x) > 0 that maps age to boost

-L_1_1

W_L_L_L_L_L

97

The GittinsBoost policy

defined by a boost function b(x) > 0 that maps age to boost

Which boost function is optimal?

98

The GittinsBoost policy

defined by a boost function b(x) > O that maps to boost

Which boost function is optimal?

choosing:
1 Ele”1(S<y) | S > x]
b(x) = —log | sup
o\ E[GM=0 — 1] 5> x]

gets us a strongly optimal policy in the class of policies that don’t use job size information.

99

The GittinsBoost policy

defined by a boost function b(x) > 0 that maps age to boost

Which boost function is optimal?

looks similar to the

choosing: Gittins rank function...
1 E[e”1(S<y)|S > x]
b(x) = —log | sup
r o\ ey E[e7GW=9 1§ > x]

gets us a strongly optimal policy in the class of policies that don’t use job size information.

100

known size

uling
n sizes

How does s
with

r?

How 1s GittinsBoost
related to Gittins?

How 1s mini
differentgdtro

lim P[T > ¢]

I— 00

(light-tailed)

GittinsBoost

Does the technique used
to discover Boost work
with unknown sizes?

101

How might we discover an optimal policy?

arrivals

random (

102

How might we discover an optimal policy?

A U SR S ST “

T

random
arrivals

—— —

C | I I I

103

How might we discover an optimal policy?

ignore future

arrivals _ -

I
—
I | 1
h

, @

104

How might we discover an optimal policy?

ignore future

arrivals _ -

I
N
I | 1
h

a
@
C_
e
C

Batch Problem:

G | I
¢
C | 1 I 1 | I

105

Queue
Objective

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

106

What is the optimal policy for the batch problem?

Queue E _[T]

ObJ ective w/ known sizes
Batch

Objective

Optimal

Policy

107

What is the optimal policy for the batch problem?

Queue E _[T]
ObJ ective w/ known sizes
|
Batch N Z 1;
Objective i=1
w/ known sizes
Optimal

Policy

108

What is the optimal policy for the batch problem?

Queue E _[T]
ObJ ective w/ known sizes
N
Batch Z 1;
Objective i=1
w/ known sizes
Optimal

Policy

109

What is the optimal policy for the batch problem?

Queue E _[T]
ObJ ective w/ known sizes
N
Batch Z (D; —A)
Objective i=1
w/ known sizes
Optimal

Policy

110

What is the optimal policy for the batch problem?

Queue E _[T]
ObJ ective w/ known sizes
N N
Batch 2 D; — Z A,
Objective i=1 i=1
w/ known sizes
Optimal

Policy

1M1

What is the optimal policy for the batch problem?

Queue E _[T]
ObJ ective w/ known sizes
N
Batch Z D;
Objective i=1
w/ known sizes
Optimal

Policy

112

What is the optimal policy for the batch problem?

Queue E _[T]
ObJ ective w/ known sizes
N
Batch Z D;
Objective i=1
w/ known sizes
Optimal

Policy

SRPT

13

What is the optimal policy for the batch problem?

Queue E |T] E[T]
ObJeCtIVe w/ known sizes w/ unknown sizes
N
Batch 2 D;
Objective i=1
w/ known sizes
Optimal

Policy

SRPT

114

What is the optimal policy for the batch problem?

Queue E _[T] E_[T]
ObJ ective w/ known sizes w/ unknown sizes
N =N _
Batch Z D; E, Z D;
Objective i=1 =1
w/ known sizes w/ unknown sizes
Optimal

Policy

SRPT

115

What is the optimal policy for the batch problem?

Queue E _[T] E_[T]
ObJ ective w/ known sizes w/ unknown sizes
N =N _
Batch Z D; E, 2 D;
Objective i=1 =1
w/ known sizes w/ unknown sizes
Optimal

Policy

SRPT

Gittins

116

What is the optimal policy for the batch problem?

Queue E [T] E [T] lim PLT"> 7]
ObJ ective w/ known sizes w/ unknown sizes w/ known sizes
N =N _
Batch Z D; E, Z D;
Objective i=1 =1
w/ known sizes w/ unknown sizes
Optimal

Policy

SRPT

Gittins

117

What is the optimal policy for the batch problem?

Queue E [T] E [T] thm PIT > 1]
° ° _)w ° ° °
ObJ ective w/ known sizes w/ unknown sizes w/ known sizes a key insight in the
Boost paper
N - N _ N
D. —vA.
Batch ZDi E, ZDi Zey e
Objective i=1 =1 i=1
w/ known sizes w/ unknown sizes w/ known sizes
Optimal

Policy

SRPT

Gittins

118

What is the optimal policy for the batch problem?

Queue E [T] E [T] tlim P[T > 1]
. . —> 0 . . .
ObJ ective w/ known sizes w/ unknown sizes w/ kn sizes a key insight in the
Boost paper
N - N _ N
D. —vA.
Batch ZDi E, ZDi Zey e
Objective i=1 =l i=1
w/ known sizes w/ unknown sizes w/ known sizes
Optimal

Policy

SRPT

Gittins

19

What is the optimal policy for the batch problem?

Queue E [T] E [T] tlim P[T > 1]
. . —> 0 . . .
ObJ ective w/ known sizes w/ unknown sizes w/ kn sizes a key insight in the
Boost paper
N - N _ N
D. —vA.
Batch ZDi E, ZDi Zey e
Objective i=1 =l i=1
w/ known sizes w/ unknown sizes w/ known sizes
Optimal

Policy

SRPT

Gittins

Boost

120

What is the optimal policy for the batch problem?

. . [— 00 [— 00
ObJ ective w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
N - N _ N
D. —vA.
Batch ZDz’ E, ZDi Zey e
Objective i=1 =l i=1
w/ known sizes w/ unknown sizes w/ known sizes
Optimal

Policy

SRPT

Gittins

Boost

121

What is the optimal policy for the batch problem?

Queue Eﬂ[T] EE[T] Iim P[T > t] Iim P[T > t]
. . [— 00 [— 00
ObJ ective w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
N = N _ N - N _
Batch Z Di EJZ Z Di Z e}’Di e_}’Ai E]t Z e}/Di e —YA,;
Objective i=1 L=l i=1 Ci=1 '
w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
Optimal

Policy

SRPT

Gittins

Boost

122

What is the optimal policy for the batch problem?

Queue Eﬂ[T] Eﬂ[T] Iim P[T > t] Iim P[T > t]
. . [— 00 [— 00
ObJ ective w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
N = N _ N - N _
Batch Z Di EJZ Z Di Z e}’Di e_}’Ai E]t Z e}/Di e —YA,;
Objective i=1 L=l i=1 Ci=1 '
w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
Optimal

Policy

SRPT

Gittins

Boost

GittinsBoost

123

What is the optimal policy for the batch problem?

Queue Eﬂ[T] EE[T] lim P[T > 1] lim P[T > ¢]
. . I— 00 I— o0
ObJ ective w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
N = N _ N = N _
Objective i=1 L=l i=1 Ci=1 '
w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
Og)otlliT;l SRPT Gittins Boost GittinsBoost

All of these are in the Gittins family of policies!

What is the Gittins family of policies?

Gittins policies solve the family of batch problems:

job sizes independent

g | | 1

vl L_L_L_L_L_l_1_1
vl L_L_L_L_L_l_1_1
vl L_L_L_L_L_l_1_1

g | 1 1 | | l

125

What is the Gittins family of policies?

Gittins policies solve the family of batch problems:
_ 5 : _
\J

job sizes independent
Wi Wy W3 Wy W5 We Wy

\—\f_J

cost at completion

_L_L_L_L_L_L_1_1
l_L_L_L_L_L_L_1_1
_L_L_L_L_L_L_1_1

126

What is the Gittins family of policies?

Gittins policies solve the family of batch problems:
_ 5 : _
\J

job sizes independent
Wi Wy W3 Wy W5 We Wy
with objective: . .
N

cost at completion
minimize E”l Z e PP wi]

=1

(h > 0)

_L_L_L_L_L_L_1_1
l_L_L_L_L_L_L_1_1
_L_L_L_L_L_L_1_1

127

What is the Gittins family of policies?

Gittins policies solve the family of batch problems:
_ 5 : _
\J

job sizes independent
Wi Wy W3 Wy W5 We Wy
with objective: . .
N N

cost at completion
minimize Eﬂ[) e w,.] or minimize Eﬂ[) D, wi]
=1 =1

F>0) “p =0y

_L_L_L_L_L_L_1_1
l_L_L_L_L_L_L_1_1
_L_L_L_L_L_L_1_1

128

What is the Gittins family of policies?

Gittins policies solve the family of batch problems:
_ 5 : _
\J

job sizes independent
Wi Wy W3 Wy W5 We Wy

\—\f_J

cost at completion

with objective: . .
N N N

minimize E”l Z e PD; Wi] or Mminimize E”l Z D, wi] or Mminimize E”l Z e PP; wl-]

=1 =1 =1
(B> 0) (B =0y F<0)

_L_L_L_L_L_L_1_1
l_L_L_L_L_L_L_1_1
_L_L_L_L_L_L_1_1

129

What is the Gittins family of policies?

Gittins policies solve the family of batch problems:

_L_L_L_L_L_L_1_1
l_L_L_L_L_L_L_1_1
_L_L_L_L_L_L_1_1

R ERENCEE R
job sizes independent
Wi Wy W3 Wy W5 We Wy
b\f_#

cost at completion

with objective: — . . .
negative discounting = inflation
N N N

minimize E”l Z e PD; Wi] or Mminimize E”l Z D, wi] or Mminimize E”l Z e PP; wl-]

=1 =1 =1
(B> 0) (B =0y F<0)

130

What is the Gittins family of policies?

Gittins policies solve the family of batch problems:

_L_L_L_L_L_L_1_1
l_L_L_L_L_L_L_1_1
_L_L_L_L_L_L_1_1

R ERENCEE R
job sizes independent
Wi Wy W3 Wy W5 We Wy
b\f_#

cost at completion

with objective:
: : D. —vA.
N N N

minimize E”l Z e PD; Wi] or Mminimize E”l Z D, wi] or Mminimize E”l Z e PP; wl-]

=1 =1 =1
(B> 0) (B =0y F<0)

131

What is the optimal policy for the batch problem?

Queue Eﬂ[T] EE[T] lim P[T > 1] lim P[T > ¢]
. . I— 00 I— o0
ObJ ective w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
N = N _ N = N _
Objective i=1 L=l i=1 Ci=1 '
w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
Og)otlliT;l SRPT Gittins Boost GittinsBoost

All of these are in the Gittins family of policies!

What is the optimal policy for the batch problem?

Queue Eﬂ[T] EE[T] lim P[T > 1] lim P[T > ¢]
. . I— 00 I— o0
ObJ ective w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
N = N _ N = N _
Objective i=1 L=l i=1 Ci=1 '
w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
01%1111?;1 SRPT Gittins Boost GittinsBoost

All of these are in the Gittins family of policies!

How do we show optimality in the queue setting?

133

Boost optimality in the queue setting

server idle server idle

busy period

134

Boost optimality in the queue setting

server idle server idle

\

busy period

batch problem: | -

135

GittinsBoost optimality in the queue setting

136

GittinsBoost optimality in the queue setting

server idle server idle

/ \

137

GittinsBoost optimality in the queue setting

server idle server idle

/ \

1
-L_1_1_1
1
1

batch problem:

l_L_L_L_L_L
l_L_L_L_L_L
\l_L_L_L_L_L_L_1_
l_L_L_L_L_L

138

GittinsBoost optimality in the queue setting

server idle server idle

/ \

job sizes are now L
correlated

-4

1
-L_1_1_1
1
-L_1_1

batch problem:

\l_L_L_L_L_L_1L_
l_L_L_L_L_L
l_L_L_L_L_L

“l_L_L_L_L_L

139

GittinsBoost optimality in the queue setting

server idle server idle

/ \

O

job sizes are now L
correlated

Example

A=¢e<]and § = Unmif{1, &}

1
-L_1_1_1
1
1

batch problem:

\l_L_L_L_L_L_L_1_
l_L_L_L_L_L

\l_L_L_L_L_L_L_1_
l_L_L_L_L_L

140

GittinsBoost optimality in the queue setting

server idle server idle

/ \

O

job sizes are now L
correlated

Example
A=¢e<]and § = Unmif{1, &} .
3jobs: A, = 0, A, = 2 Ay =1 batch problem:

1
- L_1_1_1
1

l_L_L_L_L_L
l_L_L_L_L_L
\l_L_L_L_L_L_L_1_
l_L_L_L_L_L

141

GittinsBoost optimality in the queue setting

server idle server idle

/ \

job sizes are now L

correlated
O
Example !
J=¢<1and S = Unif{l, ¢ EREERNERNE
3jobs:A; =0, A, = 82’ Ay =1 batch problem:

IfS, =¢ethen$, =1

142

GittinsBoost optimality in the queue setting

server idle server idle

/ \

O

job sizes are now L
correlated

1
-1l_1_1
1

Gittins policy is not optimal for .
this correlated batch problem batch problem: : :

l_L_L_L_L_L
“l_L_L_L_L_L
\l_L_L_L_L_L_L_1_
l_L_L_L_L_L

143

GittinsBoost optimality in the queue setting

server idle server idle

/ \

job sizes are now L

correlated
O
Gittins policy is not optimal for I A A
this correlated batch problem batch problem: : : TR

l_L_L_L_L_L
vl L_L_L_L_L

main technical challenge: showing optimality in queue setting

144

What was our approach?

age

145

non-preemptible

non-preemptible

age

What was our approach?

age

146

non-preemptible

non-preemptible

age

What was our approach?

age

age

147

What was our approach?

non-preemptible non-preemptible

N N

age age age

Batch Setting Optimality: all three policies are the same

148

What was our approach?

non-preemptible non-preemptible

N N

age age age
Batch Setting Optimality: all three policies are the same

Queue Setting Optimality: all three policies have the same asymptotic tail behavior

149

Summary

150

Summary

Problem

Schedule for P|T > t] as t - o

1591

Summary

Problem Contribution
] - e
; - - o

Schedule for P|T > t] as t — oo GittinsBoost: map age to boost

152

Summary

Problem Contribution

Schedule for P|T > t] as t — oo GittinsBoost: map age to boost

Main Ideas

batch problem:

VIl L_L_L_L_L_L_1l_1

.L_L_L_L_L_.I._.L_.I.

I_L_L_L-L-L-.L-.I._.L

| /—________________
vJl_L_L_L_L_L_1_1_1

153

Summary

Problem Contribution

Schedule for P|T > t] as t — oo GittinsBoost: map age to boost

Main Ideas

batch problem:

VIl L_L_L_L_L_L_1l_1

.L_L_L_L_L_.I._.L_.I.

I_L_L_L-L-L-.L-.I._.L

| /—________________
vJl_L_L_L_L_L_1_1_1

queue optimality h batch optimality

main technical challenge

154

