
1

A Gittins Policy for Optimizing
Tail Latency

Amit Harlev Cornell CAM

George Yu Cornell ORIE
Ziv Scully Cornell ORIE

Joint work with

How do we minimize delays
when job sizes are unknown?

2

How do we minimize delays
when job sizes are unknown?

3

(asymptotic) tail latency
in single server queue

serverqueue

4

Scheduling in the M/G/1

serverqueue

job

5

Scheduling in the M/G/1

size

serverqueue

job

6

Scheduling in the M/G/1

size

serverqueue

job

7

Scheduling in the M/G/1

size

serverqueue

job

8

Scheduling in the M/G/1

size

serverqueue

job

size
remaining size

age

9

Scheduling in the M/G/1

serverqueue

job

size
remaining size

age

random
arrivals

10

Scheduling in the M/G/1

serverqueue

job

size
remaining size

age

random
arrivals

11

Scheduling in the M/G/1

serverqueue

job

size
remaining size

age

random
arrivals

12

Scheduling in the M/G/1

serverqueue

job

size
remaining size

age

random
arrivals

13

Scheduling in the M/G/1

serverqueue

job

size
remaining size

age

random
arrivals

14

Scheduling in the M/G/1

size distribution
arrival rate (Poisson)

S =
λ =

serverqueue

job

random
arrivals

15

Scheduling in the M/G/1

Scheduling: In which order should we serve jobs to minimize a desired metric?

size distribution
arrival rate (Poisson)

S =
λ =

serverqueue

Scheduling: In which order should we serve jobs to minimize a desired metric?

T = response time

16

serverqueue

Theory

T = response time

17

serverqueue

Theory

• mean response time, E[T]

• E[T] with unknown job sizes

• weighted E[T]

T = response time

18

serverqueue

Theory

• mean response time, E[T]

• E[T] with unknown job sizes

• weighted E[T]

T = response time

19

SRPT

serverqueue

Theory

• mean response time, E[T]

• E[T] with unknown job sizes

• weighted E[T]

T = response time

20

SRPT

serverqueue

Theory

• mean response time, E[T]

• E[T] with unknown job sizes

• weighted E[T]

T = response time

21

SRPT

Gittins

serverqueue

Theory

T = response time

• mean response time, E[T]

• E[T] with unknown job sizes

• weighted E[T]

22

SRPT

Gittins

serverqueue

Theory Practice

T = response time

23

• mean response time, E[T]

• E[T] with unknown job sizes

• weighted E[T]

SRPT

Gittins

serverqueue

Theory Practice

• tail latency, P[T > t] for large t

• tail latency with unknown job sizes

T = response time

24

• mean response time, E[T]

• E[T] with unknown job sizes

• weighted E[T]

SRPT

Gittins

serverqueue

Theory Practice

T = response time

• tail latency, P[T > t] for large t

• tail latency with unknown job sizes

25

• mean response time, E[T]

• E[T] with unknown job sizes

• weighted E[T]

SRPT

Gittins

serverqueue

Theory Practice

• tail latency, P[T > t] for large t

• tail latency with unknown job sizes

T = response time

26

• mean response time, E[T]

• E[T] with unknown job sizes

• weighted E[T]

SRPT

Gittins

hard to analyze

serverqueue

Theory Practice

• tail latency, P[T > t] for large t

• tail latency with unknown job sizes

T = response time

27

• mean response time, E[T]

• E[T] with unknown job sizes

• weighted E[T]

SRPT

Gittins

hard to analyze
This talk: asymptotic tail latency

 as
with unknown job sizes!

P[T > t] t → ∞

What does it mean to minimize asymptotic tail latency?

28

What does it mean to minimize asymptotic tail latency?

Kπ = sup
π*

lim
t→∞

P[Tπ > t]
P[Tπ* > t]

29

What does it mean to minimize asymptotic tail latency?

Kπ = sup
π*

lim
t→∞

P[Tπ > t]
P[Tπ* > t]

: weakly optimalKπ < ∞

30

What does it mean to minimize asymptotic tail latency?

Kπ = sup
π*

lim
t→∞

P[Tπ > t]
P[Tπ* > t]

: weakly optimalKπ < ∞

: strongly optimalKπ = 1

31

What does it mean to minimize asymptotic tail latency?

Kπ = sup
π*

lim
t→∞

P[Tπ > t]
P[Tπ* > t]

: weakly optimalKπ < ∞

: strongly optimalKπ = 1

32

Which policies are weakly optimal?

What does it mean to minimize asymptotic tail latency?

Kπ = sup
π*

lim
t→∞

P[Tπ > t]
P[Tπ* > t]

Heavy-Tailed Size Distribution

: weakly optimalKπ < ∞

: strongly optimalKπ = 1

33

• PS (Processor Sharing)

• LAS (Least Attained Service)

• SRPT (Shortest Remaining Processing Time)

• PLCFS (Preemptive Last Come First Serve)

Which policies are weakly optimal?

What does it mean to minimize asymptotic tail latency?

Kπ = sup
π*

lim
t→∞

P[Tπ > t]
P[Tπ* > t]

Heavy-Tailed Size Distribution

: weakly optimalKπ < ∞

: strongly optimalKπ = 1

34

• PS (Processor Sharing)

• LAS (Least Attained Service)

• SRPT (Shortest Remaining Processing Time)

• PLCFS (Preemptive Last Come First Serve)

Which policies are weakly optimal?“ ”P[S > x] ∼ Ω(x−β)

What does it mean to minimize asymptotic tail latency?

Kπ = sup
π*

lim
t→∞

P[Tπ > t]
P[Tπ* > t]

Heavy-Tailed Size Distribution Light-Tailed Size Distribution

: weakly optimalKπ < ∞

: strongly optimalKπ = 1

35

• PS (Processor Sharing)

• LAS (Least Attained Service)

• SRPT (Shortest Remaining Processing Time)

• PLCFS (Preemptive Last Come First Serve)

Which policies are weakly optimal? “ ”P[S > x] ∼ O(e−βx)“ ”P[S > x] ∼ Ω(x−β)

What does it mean to minimize asymptotic tail latency?

Kπ = sup
π*

lim
t→∞

P[Tπ > t]
P[Tπ* > t]

Heavy-Tailed Size Distribution Light-Tailed Size Distribution

: weakly optimalKπ < ∞

: strongly optimalKπ = 1

36

• PS (Processor Sharing)

• LAS (Least Attained Service)

• SRPT (Shortest Remaining Processing Time)

• PLCFS (Preemptive Last Come First Serve)

• FCFS (First Come First Serve)

• Nudge (Grosof et al. 2021)

• Boost (Yu & Scully 2024)

Which policies are weakly optimal? “ ”P[S > x] ∼ O(e−βx)“ ”P[S > x] ∼ Ω(x−β)

What does it mean to minimize asymptotic tail latency?

Kπ = sup
π*

lim
t→∞

P[Tπ > t]
P[Tπ* > t]

Heavy-Tailed Size Distribution Light-Tailed Size Distribution

: weakly optimalKπ < ∞

: strongly optimalKπ = 1

37

• PS (Processor Sharing)

• LAS (Least Attained Service)

• SRPT (Shortest Remaining Processing Time)

• PLCFS (Preemptive Last Come First Serve)

• FCFS (First Come First Serve)

• Nudge (Grosof et al. 2021)

• Boost (Yu & Scully 2024)

Which policies are weakly optimal? “ ”P[S > x] ∼ O(e−βx)“ ”P[S > x] ∼ Ω(x−β)

What does it mean to minimize asymptotic tail latency?

Kπ = sup
π*

lim
t→∞

P[Tπ > t]
P[Tπ* > t]

Heavy-Tailed Size Distribution Light-Tailed Size Distribution

strongly
optimal

strongly
optimal

Which policies are weakly optimal?

: weakly optimalKπ < ∞

: strongly optimalKπ = 1

38

• PS (Processor Sharing)

• LAS (Least Attained Service)

• SRPT (Shortest Remaining Processing Time)

• PLCFS (Preemptive Last Come First Serve)

• FCFS (First Come First Serve)

• Nudge (Grosof et al. 2021)

• Boost (Yu & Scully 2024)

What does it mean to minimize asymptotic tail latency?

Kπ = sup
π*

lim
t→∞

P[Tπ > t]
P[Tπ* > t]

Heavy-Tailed Size Distribution Light-Tailed Size Distribution

Which policies are weakly optimal?

: weakly optimalKπ < ∞

: strongly optimalKπ = 1

39

• PS (Processor Sharing)

• LAS (Least Attained Service)

• SRPT (Shortest Remaining Processing Time)

• PLCFS (Preemptive Last Come First Serve)

• FCFS (First Come First Serve)

• Nudge (Grosof et al. 2021)

• Boost (Yu & Scully 2024)

(without job size information)

strongly
optimal

strongly
optimal

What does it mean to minimize asymptotic tail latency?

Kπ = sup
π*∈UnknownSize

lim
t→∞

P[Tπ > t]
P[Tπ* > t]

Heavy-Tailed Size Distribution Light-Tailed Size Distribution

Which policies are weakly optimal?

: weakly optimalKπ < ∞

: strongly optimalKπ = 1

40

• PS (Processor Sharing)

• LAS (Least Attained Service)

• SRPT (Shortest Remaining Processing Time)

• PLCFS (Preemptive Last Come First Serve)

• FCFS (First Come First Serve)

• Nudge (Grosof et al. 2021)

• Boost (Yu & Scully 2024)

(without job size information)

strongly
optimal

strongly
optimal

What does it mean to minimize asymptotic tail latency?

Kπ = sup
π*∈UnknownSize

lim
t→∞

P[Tπ > t]
P[Tπ* > t]

Heavy-Tailed Size Distribution Light-Tailed Size Distribution

Which policies are weakly optimal?

: weakly optimalKπ < ∞

: strongly optimalKπ = 1

41

• PS (Processor Sharing)

• LAS (Least Attained Service)

• SRPT (Shortest Remaining Processing Time)

• PLCFS (Preemptive Last Come First Serve)

• FCFS (First Come First Serve)

• Nudge (Grosof et al. 2021)

• Boost (Yu & Scully 2024)

(without job size information)

strongly
optimal

strongly
optimal

Our contribution: new policy + proof of strong optimality

42

GittinsBoost

Our contribution: GittinsBoost + proof of strong optimality

Boost

43

(light-tailed)

lim
t→∞

P[T > t]

known sizes unknown sizes

How do we generalize Boost to
the unknown size setting

GittinsBoost

Our contribution: GittinsBoost + proof of strong optimality

Boost

44

(light-tailed)

lim
t→∞

P[T > t]

known sizes unknown sizes

How do we generalize Boost to
the unknown size setting

GittinsBoost

What is Boost?

Our contribution: GittinsBoost + proof of strong optimality

Boost

45

(light-tailed)

lim
t→∞

P[T > t]

known sizes unknown sizes

How do we generalize Boost to
the unknown size setting

GittinsBoost

How does scheduling
with unknown sizes

differ?

What is Boost?

Boost

46

(light-tailed)

lim
t→∞

P[T > t] Boost

SRPT

known sizes unknown sizes

E[T]

(light-tailed)

lim
t→∞

P[T > t]

Gittins

Our contribution: GittinsBoost + proof of strong optimality

GittinsBoost

What is Boost?

How does scheduling
with unknown sizes

differ?

Boost

47

(light-tailed)

lim
t→∞

P[T > t] Boost

SRPT

known sizes unknown sizes

E[T]

(light-tailed)

lim
t→∞

P[T > t]

Gittins

How is minimizing E[T]
different from minimizing

?lim
t→∞

P[T > t]

Our contribution: GittinsBoost + proof of strong optimality

GittinsBoost

What is Boost?

How does scheduling
with unknown sizes

differ?

Boost

48

(light-tailed)

lim
t→∞

P[T > t] Boost

SRPT

known sizes unknown sizes

E[T]

(light-tailed)

lim
t→∞

P[T > t]

How does scheduling
with unknown sizes

differ?

Gittins

How is minimizing E[T]
different from minimizing

?lim
t→∞

P[T > t]

Our contribution: GittinsBoost + proof of strong optimality

GittinsBoost

What is Boost? Does the technique used
to discover Boost work
with unknown sizes?

Boost

49

(light-tailed)

lim
t→∞

P[T > t] Boost

SRPT

known sizes unknown sizes

E[T]

(light-tailed)

lim
t→∞

P[T > t]

How does scheduling
with unknown sizes

differ?

Gittins

How is minimizing E[T]
different from minimizing

?lim
t→∞

P[T > t]

Our contribution: GittinsBoost + proof of strong optimality

GittinsBoost

How is GittinsBoost
related to Gittins?

What is Boost? Does the technique used
to discover Boost work
with unknown sizes?

Boost

50

(light-tailed)

lim
t→∞

P[T > t] Boost

SRPT

known sizes unknown sizes

E[T]

(light-tailed)

lim
t→∞

P[T > t]

How does scheduling
with unknown sizes

differ?

Gittins

How is minimizing E[T]
different from minimizing

?lim
t→∞

P[T > t]

Our contribution: GittinsBoost + proof of strong optimality

GittinsBoost

How is GittinsBoost
related to Gittins?

What is Boost?

1

2

Does the technique used
to discover Boost work
with unknown sizes?

51

Optimizing Means vs Optimizing Tails

Minimize E[T] Minimize P[T>t]

• Don’t want small jobs stuck
behind large job

52

Optimizing Means vs Optimizing Tails

Minimize E[T] Minimize P[T>t]

Minimize E[T] Minimize P[T>t]

• Don’t want small jobs stuck
behind large job

• Don’t want small jobs stuck
behind large job

• Don’t want large jobs to be
overly delayed

53

Optimizing Means vs Optimizing Tails

54

• Don’t want small jobs stuck
behind large job

• Don’t want small jobs stuck
behind large job

• Don’t want large jobs to be
overly delayed

Optimizing Means vs Optimizing Tails

Minimize E[T] Minimize P[T>t]

• Don’t want small jobs stuck
behind large job

• Don’t want small jobs stuck
behind large job

• Don’t want large jobs to be
overly delayed

55

Optimizing Means vs Optimizing Tails

Minimize E[T] Minimize P[T>t]

Heavy Tails:
basically doesn’t

matter

• Don’t want small jobs stuck
behind large job

• Don’t want small jobs stuck
behind large job

• Don’t want large jobs to be
overly delayed

56

Optimizing Means vs Optimizing Tails

Minimize E[T] Minimize P[T>t]

Heavy Tails:
basically doesn’t

matter
Light Tails:

very important

• Don’t want small jobs stuck
behind large job

• Don’t want small jobs stuck
behind large job

• Don’t want large jobs to be
overly delayed

57

Boost: a way to balance this tradeoff!

Optimizing Means vs Optimizing Tails

Minimize E[T] Minimize P[T>t]

Heavy Tails:
basically doesn’t

matter
Light Tails:

very important

What is Boost?

Boost serves jobs in order of ascending boosted arrival time:

boosted arrival time = arrival time - boost

58

What is Boost?

boosted arrival time = arrival time - boost

59

boost is determined by boost function that maps job size to boost.b(s) ≥ 0

Boost serves jobs in order of ascending boosted arrival time:

What is Boost?

boosted arrival time = arrival time - boost

60

boost is determined by boost function that maps job size to boost.b(s) ≥ 0

Boost serves jobs in order of ascending boosted arrival time:

(1)

What is Boost?

boosted arrival time = arrival time - boost

61

boost is determined by boost function that maps job size to boost.b(s) ≥ 0

Boost serves jobs in order of ascending boosted arrival time:

(1)

boost

What is Boost?

boosted arrival time = arrival time - boost

62

boost is determined by boost function that maps job size to boost.b(s) ≥ 0

Boost serves jobs in order of ascending boosted arrival time:

(2)

(1)

boost

What is Boost?

boosted arrival time = arrival time - boost

63

boost is determined by boost function that maps job size to boost.b(s) ≥ 0

Boost serves jobs in order of ascending boosted arrival time:

(2)

(1)

boost

What is Boost?

boosted arrival time = arrival time - boost

64

boost is determined by boost function that maps job size to boost.b(s) ≥ 0

Boost serves jobs in order of ascending boosted arrival time:

(3)(2)

(1)

boost

What is Boost?

boosted arrival time = arrival time - boost

65

boost is determined by boost function that maps job size to boost.b(s) ≥ 0

Boost serves jobs in order of ascending boosted arrival time:

(2)

(1)

(3)

boost

What is Boost?

boosted arrival time = arrival time - boost

66

boost is determined by boost function that maps job size to boost.b(s) ≥ 0

Boost serves jobs in order of ascending boosted arrival time:

Which boost function minimizes asymptotic tail latency?

What is Boost?

boosted arrival time = arrival time - boost

67

boost is determined by boost function that maps job size to boost.b(s) ≥ 0

Boost serves jobs in order of ascending boosted arrival time:

choosing:

results in strongly optimal policy (Yu & Scully, 2024)

b(s) =
1
γ

log
1

1 − e−γs

Which boost function minimizes asymptotic tail latency?

Boost

68

(light-tailed)

lim
t→∞

P[T > t] Boost

SRPT

known sizes unknown sizes

E[T]

(light-tailed)

lim
t→∞

P[T > t]

How does scheduling
with unknown sizes

differ?

Gittins

How is minimizing E[T]
different from minimizing

?lim
t→∞

P[T > t]

GittinsBoost

How is GittinsBoost
related to Gittins?

What is Boost?

1

2

3

Does the technique used
to discover Boost work
with unknown sizes?

Scheduling with unknown job sizes
serverqueue

69

serverqueue

Scheduling with unknown job sizes

70

serverqueue

Scheduling with unknown job sizes

71

serverqueue

Scheduling with unknown job sizes

72

serverqueue

Scheduling with unknown job sizes

73

serverqueue

Scheduling with unknown job sizes

74

serverqueue

Scheduling with unknown job sizes

75

serverqueue

Scheduling with unknown job sizes

76

serverqueue

Scheduling with unknown job sizes

77

serverqueue

Scheduling with unknown job sizes

78

serverqueue

Scheduling with unknown job sizes

79

state = (size, age, arrival time)

serverqueue

Scheduling with unknown job sizes

80

state = (size, age, arrival time)

SRPT: order by [size - age]

serverqueue

Scheduling with unknown job sizes

81

state = (size, age, arrival time) state = (age, arrival time)

SRPT: order by [size - age]

serverqueue

Scheduling with unknown job sizes

82

state = (size, age, arrival time) state = (age, arrival time)

SRPT: order by [size - age] Gittins: order by rank(age)

rank

age

smaller is
better

smaller is
better

serverqueue

Scheduling with unknown job sizes

83

state = (size, age, arrival time) state = (age, arrival time)

SRPT: order by [size - age] Gittins: order by rank(age)

rank

age

proxy for [size - age],
depends on size distribution

serverqueue

Scheduling with unknown job sizes

84

state = (size, age, arrival time) state = (age, arrival time)

SRPT: order by [size - age] Gittins: order by rank(age)

rank

age
Boost: order by [A - b(s)]

smaller is
better

proxy for [size - age],
depends on size distribution

smaller is
better

serverqueue

Scheduling with unknown job sizes

85

state = (size, age, arrival time) state = (age, arrival time)

SRPT: order by [size - age] Gittins: order by rank(age)

rank

age

proxy for [size - age],
depends on size distribution

Boost: order by [A - b(s)] GittinsBoost:
order by [A - b(age)]

smaller is
better

serverqueue

Scheduling with unknown job sizes

86

state = (size, age, arrival time) state = (age, arrival time)

SRPT: order by [size - age] Gittins: order by rank(age)

rank

age

proxy for [size - age],
depends on size distribution

Boost: order by [A - b(s)] GittinsBoost:
order by [A - b(age)]

Proxy for b(s)

defined by a boost function that maps age to boostb(x) ≥ 0

87

The GittinsBoost policy

defined by a boost function that maps age to boostb(x) ≥ 0

88

The GittinsBoost policy

defined by a boost function that maps age to boostb(x) ≥ 0

89

The GittinsBoost policy

defined by a boost function that maps age to boostb(x) ≥ 0

90

The GittinsBoost policy

defined by a boost function that maps age to boostb(x) ≥ 0

91

The GittinsBoost policy

defined by a boost function that maps age to boostb(x) ≥ 0

92

The GittinsBoost policy

defined by a boost function that maps age to boostb(x) ≥ 0

93

The GittinsBoost policy

crossing!

defined by a boost function that maps age to boostb(x) ≥ 0

94

The GittinsBoost policy

defined by a boost function that maps age to boostb(x) ≥ 0

95

The GittinsBoost policy

defined by a boost function that maps age to boostb(x) ≥ 0

96

The GittinsBoost policy

job completes

defined by a boost function that maps age to boostb(x) ≥ 0

97

The GittinsBoost policy

defined by a boost function that maps age to boostb(x) ≥ 0

98

The GittinsBoost policy

Which boost function is optimal?

defined by a boost function that maps age to boostb(x) ≥ 0

99

The GittinsBoost policy

choosing:

gets us a strongly optimal policy in the class of policies that don’t use job size information.

b(x) =
1
γ

log (sup
y>x

E[eγS 1(S ≤ y) ∣ S > x]
E[eγ((S∧y)−x) − 1 ∣ S > x])

Which boost function is optimal?

defined by a boost function that maps age to boostb(x) ≥ 0

100

The GittinsBoost policy

choosing:

gets us a strongly optimal policy in the class of policies that don’t use job size information.

b(x) =
1
γ

log (sup
y>x

E[eγS 1(S ≤ y) ∣ S > x]
E[eγ((S∧y)−x) − 1 ∣ S > x])

Which boost function is optimal?

looks similar to the
Gittins rank function…

Boost

101

(light-tailed)

lim
t→∞

P[T > t] Boost

SRPT

known sizes unknown sizes

E[T]

(light-tailed)

lim
t→∞

P[T > t]

How does scheduling
with unknown sizes

differ?

Gittins

How is minimizing E[T]
different from minimizing

?lim
t→∞

P[T > t]

GittinsBoost

How is GittinsBoost
related to Gittins?

What is Boost?

1

2

3

4

5

Does the technique used
to discover Boost work
with unknown sizes?

102

How might we discover an optimal policy?

random
arrivals

103

How might we discover an optimal policy?

random
arrivals

104

How might we discover an optimal policy?

random
arrivals

ignore future
arrivals

105

How might we discover an optimal policy?

random
arrivals

Batch Problem:

ignore future
arrivals

106

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

Queue
Objective

107

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

Queue
Objective

Eπ[T]
w/ known sizes

108

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

1
N

N

∑
i=1

Ti

109

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

N

∑
i=1

Ti

110

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

N

∑
i=1

(Di − Ai)

111

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

N

∑
i=1

Di −
N

∑
i=1

Ai

112

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

N

∑
i=1

Di

113

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

SRPT

N

∑
i=1

Di

114

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

SRPT

Eπ[T]
w/ unknown sizes

N

∑
i=1

Di

115

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

SRPT

Eπ[T]
w/ unknown sizes

w/ unknown sizes

N

∑
i=1

Di Eπ[
N

∑
i=1

Di]

116

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

SRPT

Eπ[T]
w/ unknown sizes

w/ unknown sizes

Gittins

N

∑
i=1

Di Eπ[
N

∑
i=1

Di]

117

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

SRPT

Eπ[T]
w/ unknown sizes

w/ unknown sizes

Gittins

N

∑
i=1

Di Eπ[
N

∑
i=1

Di]

lim
t→∞

P[T > t]

w/ known sizes

118

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

SRPT

Eπ[T]
w/ unknown sizes

w/ unknown sizes

Gittins

N

∑
i=1

Di Eπ[
N

∑
i=1

Di]
w/ known sizes

N

∑
i=1

eγDi e−γAi

lim
t→∞

P[T > t]

w/ known sizes a key insight in the
Boost paper

119

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

SRPT

Eπ[T]
w/ unknown sizes

w/ unknown sizes

Gittins

N

∑
i=1

Di Eπ[
N

∑
i=1

Di]
w/ known sizes

N

∑
i=1

eγDi e−γAi

lim
t→∞

P[T > t]

w/ known sizes a key insight in the
Boost paper

120

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

SRPT

Eπ[T]
w/ unknown sizes

w/ unknown sizes

Gittins

N

∑
i=1

Di Eπ[
N

∑
i=1

Di]
w/ known sizes

N

∑
i=1

eγDi e−γAi

lim
t→∞

P[T > t]

w/ known sizes

Boost

a key insight in the
Boost paper

121

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

SRPT

Eπ[T]
w/ unknown sizes

w/ unknown sizes

Gittins

N

∑
i=1

Di Eπ[
N

∑
i=1

Di]
w/ known sizes

N

∑
i=1

eγDi e−γAi

lim
t→∞

P[T > t]

w/ known sizes

lim
t→∞

P[T > t]

w/ unknown sizes

Boost

122

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

SRPT

Eπ[T]
w/ unknown sizes

w/ unknown sizes

Gittins

N

∑
i=1

Di Eπ[
N

∑
i=1

Di]
w/ known sizes

N

∑
i=1

eγDi e−γAi

lim
t→∞

P[T > t]

w/ known sizes

lim
t→∞

P[T > t]

w/ unknown sizes

w/ unknown sizes

Eπ[
N

∑
i=1

eγDie−γAi]

Boost

123

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

SRPT

Eπ[T]
w/ unknown sizes

w/ unknown sizes

Gittins

N

∑
i=1

Di Eπ[
N

∑
i=1

Di]
w/ known sizes

N

∑
i=1

eγDi e−γAi

lim
t→∞

P[T > t]

w/ known sizes

lim
t→∞

P[T > t]

w/ unknown sizes

w/ unknown sizes

Eπ[
N

∑
i=1

eγDie−γAi]

Boost GittinsBoost

124

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

SRPT

Eπ[T]
w/ unknown sizes

w/ unknown sizes

Gittins

N

∑
i=1

Di Eπ[
N

∑
i=1

Di]
w/ known sizes

N

∑
i=1

eγDi e−γAi

lim
t→∞

P[T > t]

w/ known sizes

lim
t→∞

P[T > t]

w/ unknown sizes

w/ unknown sizes

Eπ[
N

∑
i=1

eγDie−γAi]

Boost GittinsBoost

All of these are in the Gittins family of policies!

125

What is the Gittins family of policies?

Gittins policies solve the family of batch problems:

job sizes independent

126

What is the Gittins family of policies?

w1 w2 w3 w4 w5 w6 w7

Gittins policies solve the family of batch problems:

job sizes independent

cost at completion

127

What is the Gittins family of policies?

w1 w2 w3 w4 w5 w6 w7

(β > 0)

minimize Eπ[
N

∑
i=1

e−βDi wi]

Gittins policies solve the family of batch problems:

with objective:
discounting

job sizes independent

cost at completion

128

What is the Gittins family of policies?

w1 w2 w3 w4 w5 w6 w7

cost at completion

(β > 0)

minimize Eπ[
N

∑
i=1

e−βDi wi]

Gittins policies solve the family of batch problems:

with objective:

“ ”(β = 0)

minimize Eπ[
N

∑
i=1

Di wi]or

discounting

job sizes independent

129

What is the Gittins family of policies?

w1 w2 w3 w4 w5 w6 w7

(β > 0)

minimize Eπ[
N

∑
i=1

e−βDi wi]

Gittins policies solve the family of batch problems:

with objective:

“ ”(β = 0)

minimize Eπ[
N

∑
i=1

Di wi]or minimize Eπ[
N

∑
i=1

e−βDi wi]or

(β < 0)new-ish!

discounting

job sizes independent

cost at completion

130

What is the Gittins family of policies?

w1 w2 w3 w4 w5 w6 w7

(β > 0)

Gittins policies solve the family of batch problems:

with objective:

“ ”(β = 0)

or minimize Eπ[
N

∑
i=1

e−βDi wi]or

(β < 0)

discounting negative discounting = inflation

job sizes independent

cost at completion

minimize Eπ[
N

∑
i=1

e−βDi wi] minimize Eπ[
N

∑
i=1

Di wi]
new-ish!

131

What is the Gittins family of policies?

w1 w2 w3 w4 w5 w6 w7

(β > 0)

Gittins policies solve the family of batch problems:

with objective:

“ ”(β = 0)

or minimize Eπ[
N

∑
i=1

e−βDi wi]or

(β < 0)

discounting eγDi e−γAi

job sizes independent

cost at completion

new-ish!

minimize Eπ[
N

∑
i=1

e−βDi wi] minimize Eπ[
N

∑
i=1

Di wi]

132

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

SRPT

Eπ[T]
w/ unknown sizes

w/ unknown sizes

Gittins

N

∑
i=1

Di Eπ[
N

∑
i=1

Di]
w/ known sizes

N

∑
i=1

eγDi e−γAi

lim
t→∞

P[T > t]

w/ known sizes

lim
t→∞

P[T > t]

w/ unknown sizes

w/ unknown sizes

Eπ[
N

∑
i=1

eγDie−γAi]

Boost GittinsBoost

All of these are in the Gittins family of policies!

133

What is the optimal policy for the batch problem?

Batch
Objective

Optimal
Policy

w/ known sizes

Queue
Objective

Eπ[T]
w/ known sizes

SRPT

Eπ[T]
w/ unknown sizes

w/ unknown sizes

Gittins

N

∑
i=1

Di Eπ[
N

∑
i=1

Di]
w/ known sizes

N

∑
i=1

eγDi e−γAi

lim
t→∞

P[T > t]

w/ known sizes

lim
t→∞

P[T > t]

w/ unknown sizes

w/ unknown sizes

Eπ[
N

∑
i=1

eγDie−γAi]

Boost GittinsBoost

All of these are in the Gittins family of policies!

How do we show optimality in the queue setting?

134

Boost optimality in the queue setting

busy period

server idleserver idle

135

busy period

server idleserver idle

batch problem:

Boost optimality in the queue setting

136

GittinsBoost optimality in the queue setting

137

server idleserver idle

GittinsBoost optimality in the queue setting

138

server idleserver idle

batch problem:

GittinsBoost optimality in the queue setting

139

server idleserver idle

batch problem:

job sizes are now
correlated

GittinsBoost optimality in the queue setting

140

server idleserver idle

batch problem:

Example

 and λ = ε ≪ 1 S = Unif{1, ε}

GittinsBoost optimality in the queue setting

job sizes are now
correlated

141

server idleserver idle

batch problem:

Example

GittinsBoost optimality in the queue setting

job sizes are now
correlated

3 jobs: A1 = 0, A2 = ε2, A3 = 1
 and λ = ε ≪ 1 S = Unif{1, ε}

142

server idleserver idle

batch problem:

Example

3 jobs: A1 = 0, A2 = ε2, A3 = 1
 and λ = ε ≪ 1 S = Unif{1, ε}

If then S1 = ε S2 = 1

GittinsBoost optimality in the queue setting

job sizes are now
correlated

143

server idleserver idle

batch problem:
Gittins policy is not optimal for
this correlated batch problem

GittinsBoost optimality in the queue setting

job sizes are now
correlated

144

GittinsBoost optimality in the queue setting
server idleserver idle

batch problem:

main technical challenge: showing optimality in queue setting

job sizes are now
correlated

Gittins policy is not optimal for
this correlated batch problem

145

What was our approach?

Boosted Arrival
Time

age

146

What was our approach?

non-preemptible non-preemptible

Boosted Arrival
Time

Boosted Arrival
Time

age age

147

What was our approach?

non-preemptible non-preemptible

Boosted Arrival
Time

Boosted Arrival
Time

Boosted Arrival
Time

age age age

148

What was our approach?

non-preemptible non-preemptible

Boosted Arrival
Time

Boosted Arrival
Time

Boosted Arrival
Time

age age age

Batch Setting Optimality: all three policies are the same

149

What was our approach?

non-preemptible non-preemptible

Boosted Arrival
Time

Boosted Arrival
Time

Boosted Arrival
Time

age age age

Batch Setting Optimality: all three policies are the same

Queue Setting Optimality: all three policies have the same asymptotic tail behavior

150

Summary

151

Summary

Problem

Schedule for as P[T > t] t → ∞

152

Summary

Problem

Schedule for as P[T > t] t → ∞

Contribution

GittinsBoost: map age to boost

153

Summary

Problem

Schedule for as P[T > t] t → ∞

Contribution

GittinsBoost: map age to boost

Main Ideas

batch problem:

154

Summary

Problem

Schedule for as P[T > t] t → ∞

Contribution

GittinsBoost: map age to boost

main technical challenge

batch optimality

Main Ideas

queue optimality

batch problem:

