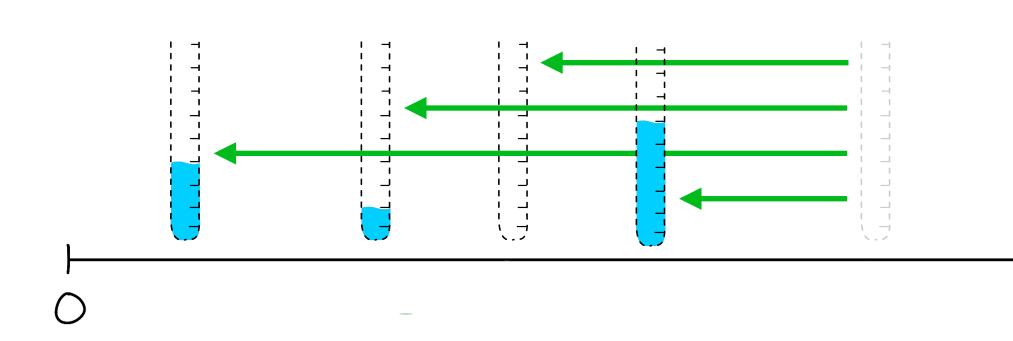
A Gittins Policy for Optimizing Tail Latency

Amit Harlev

Cornell CAM

Joint work with

George Yu Ziv Scully Cornell ORIE Cornell ORIE

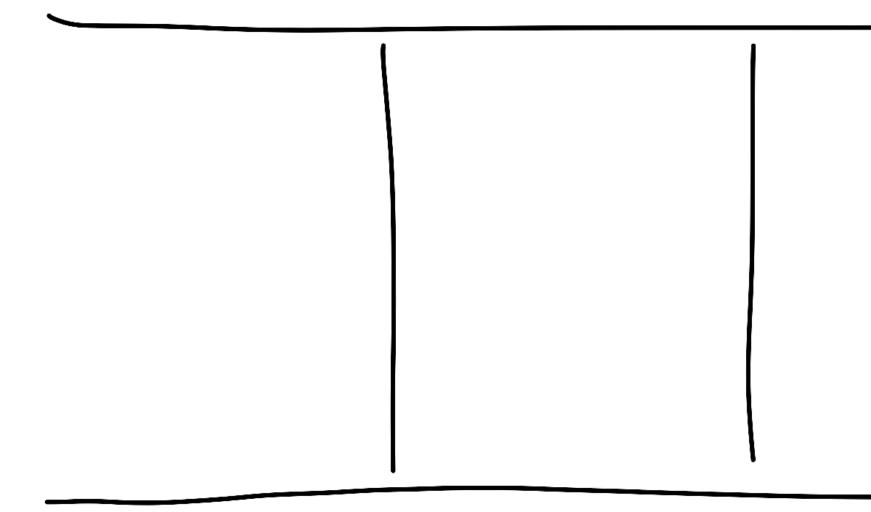


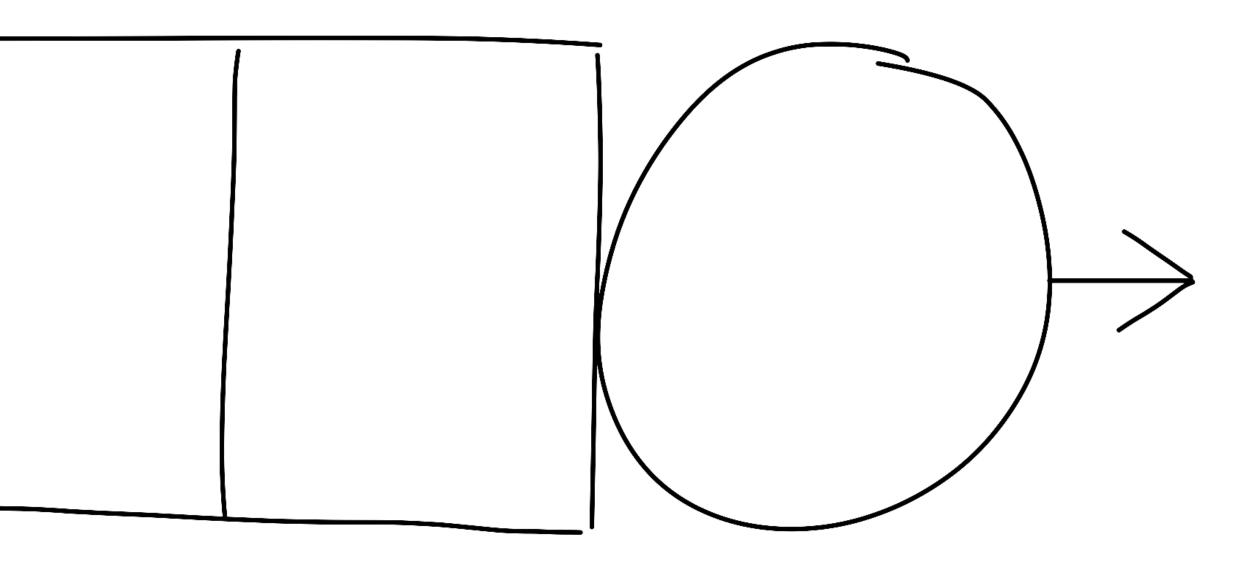
How do we minimize delays when job sizes are unknown?

How do we minimize delays when job sizes are unknown?

(asymptotic) tail latency in single server queue

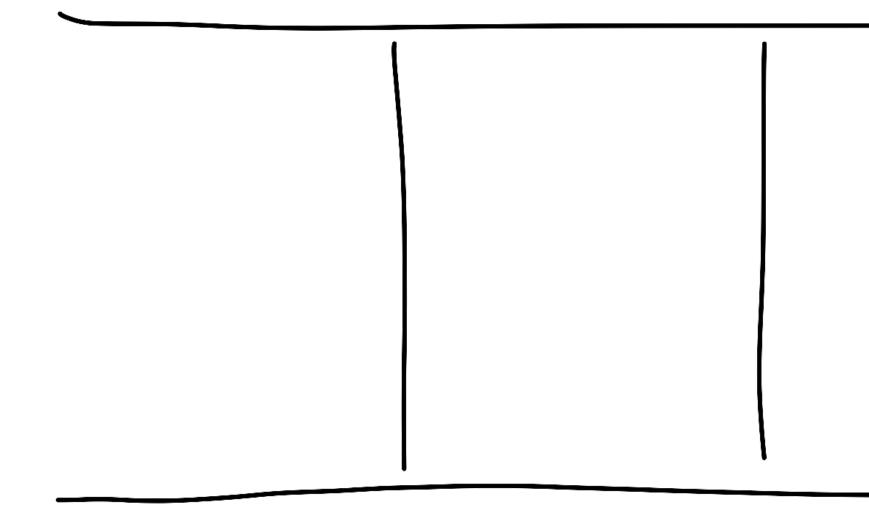
queue

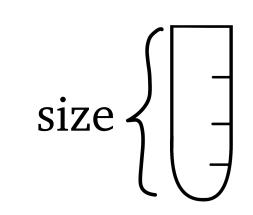


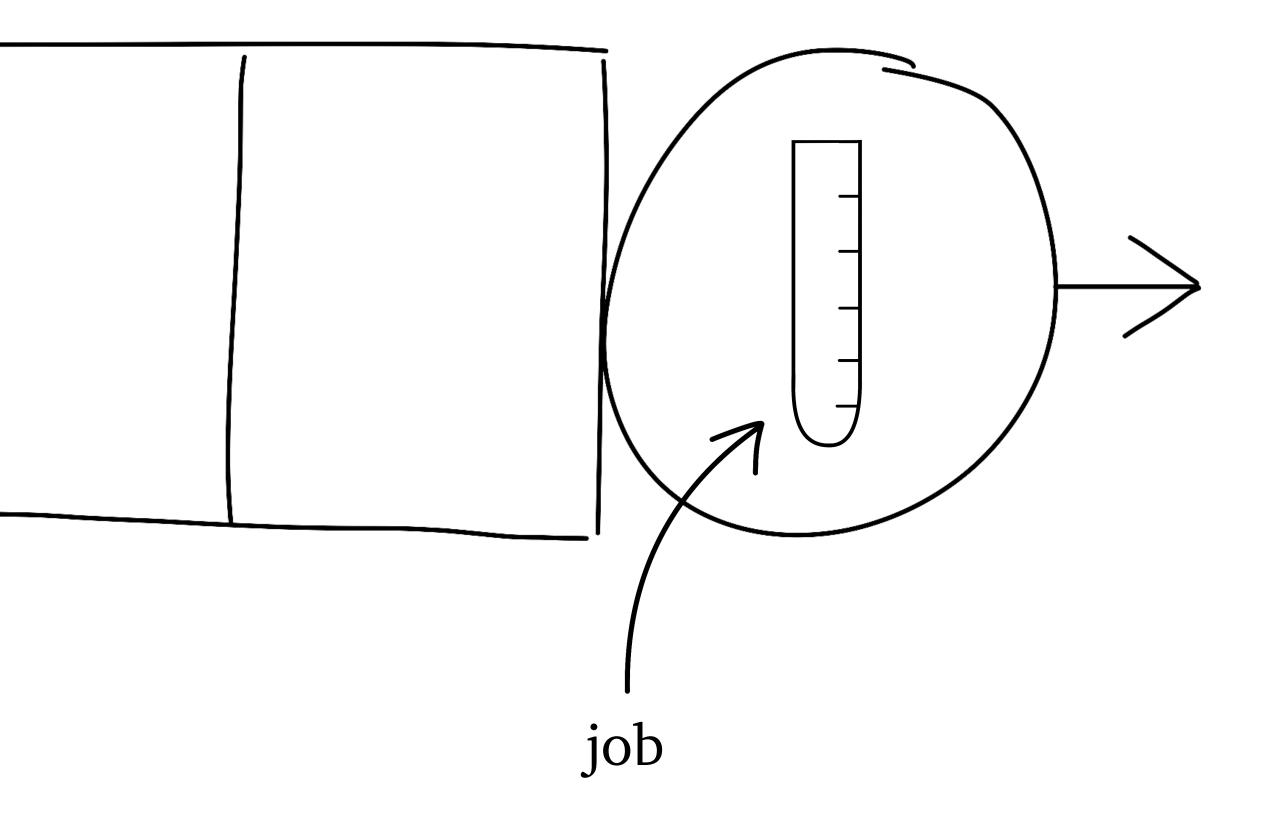


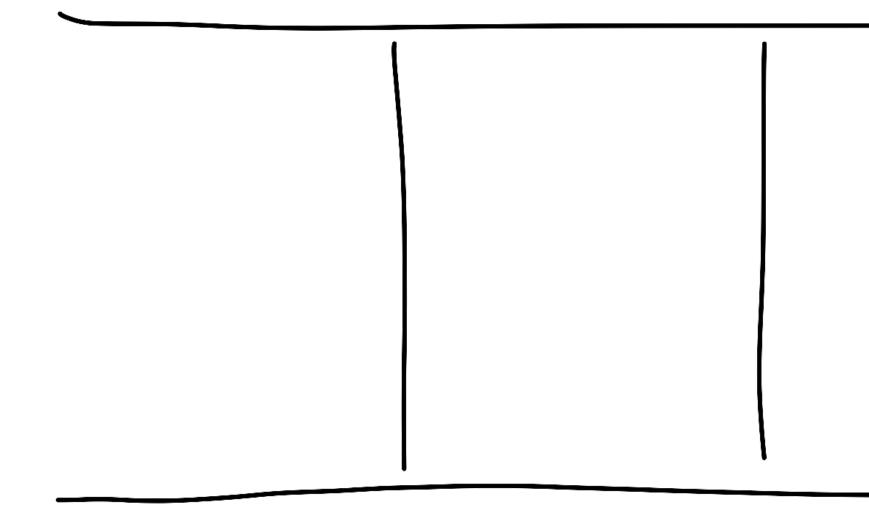


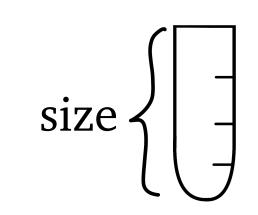
queue

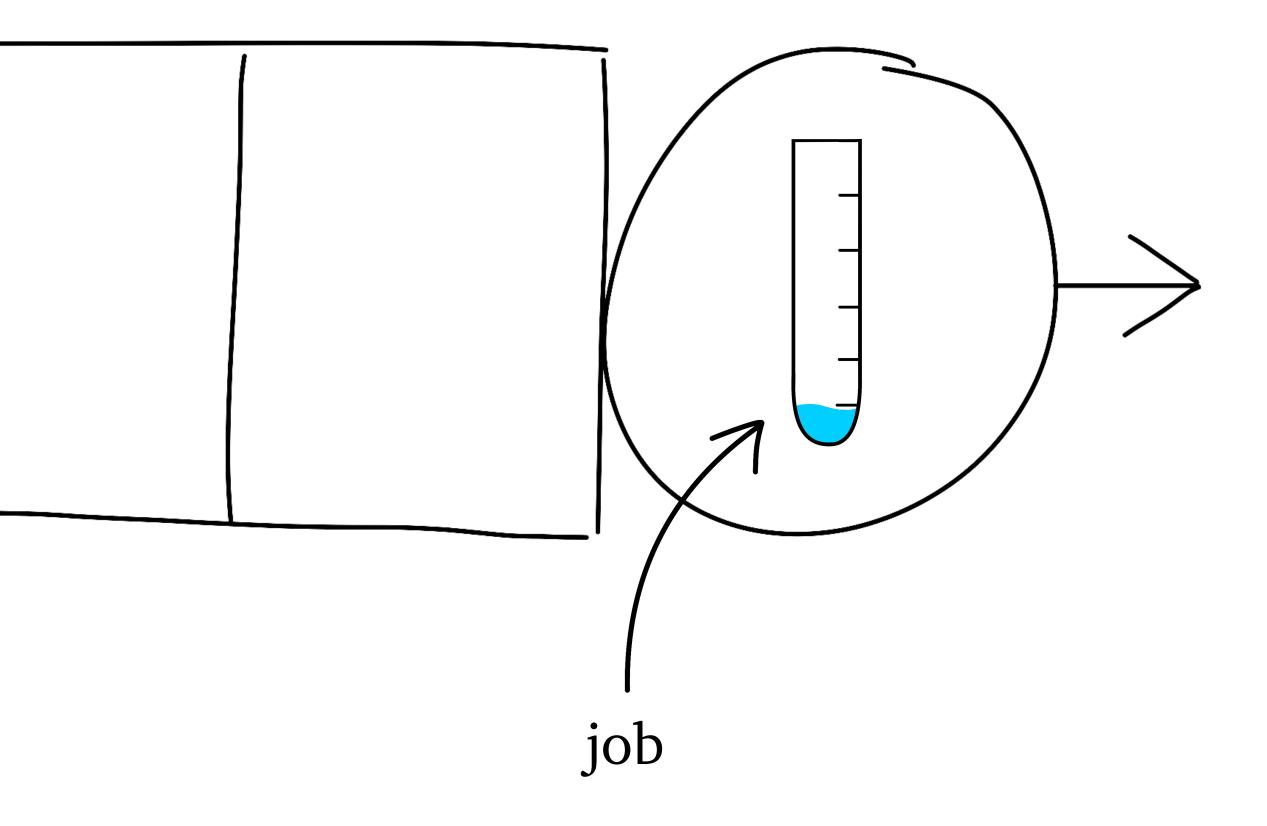


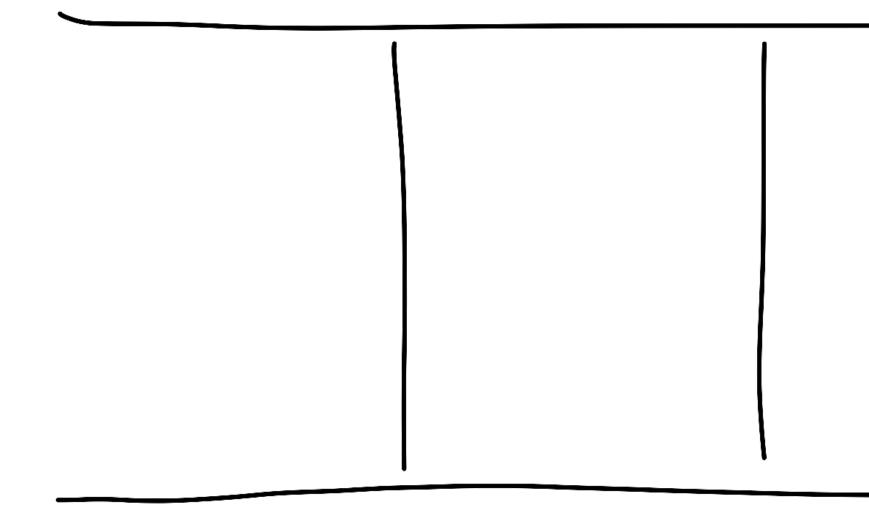


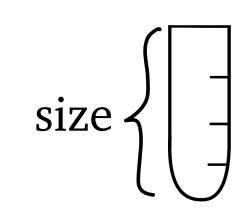


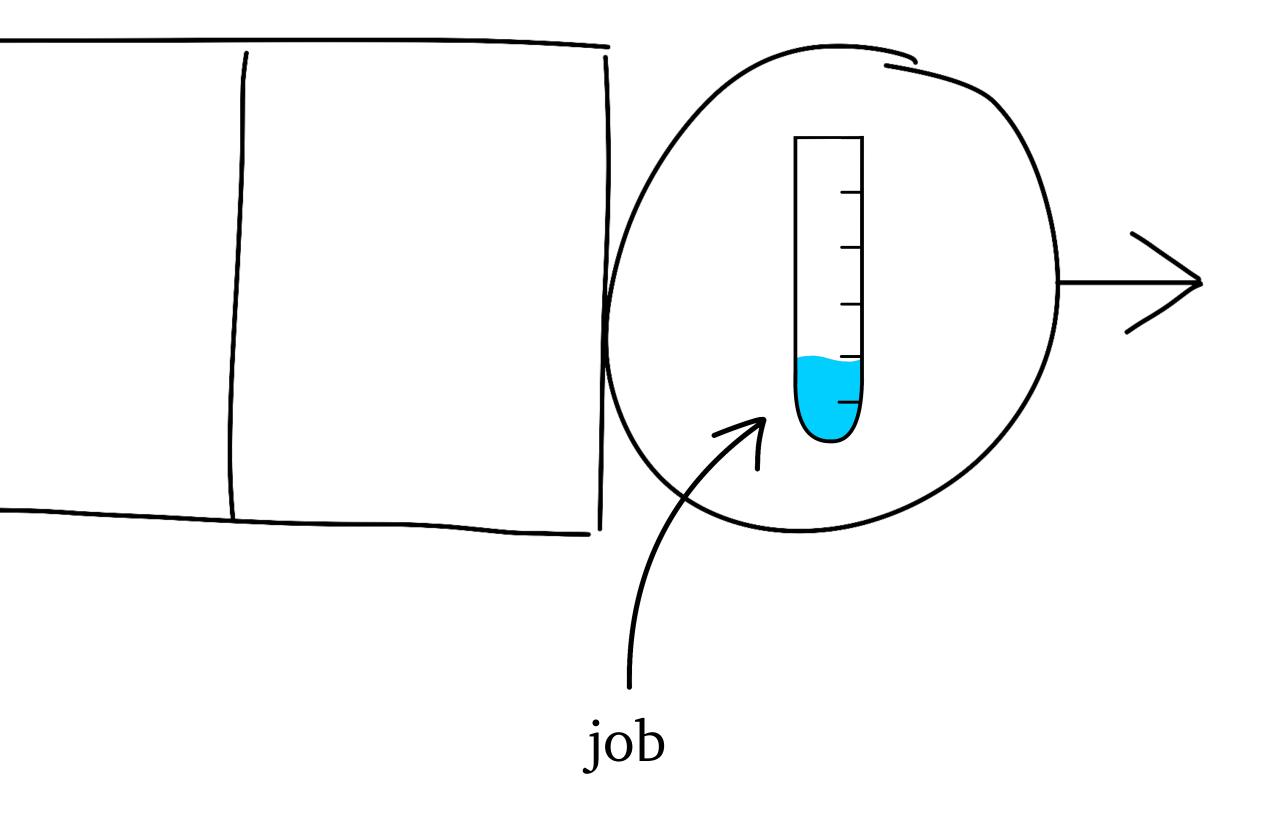




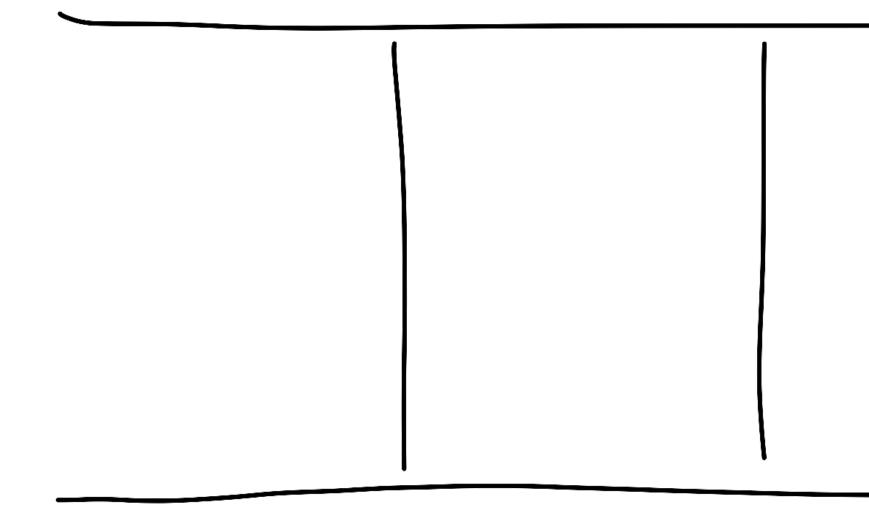


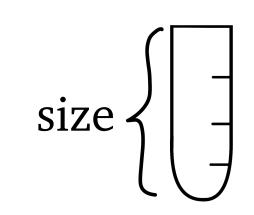


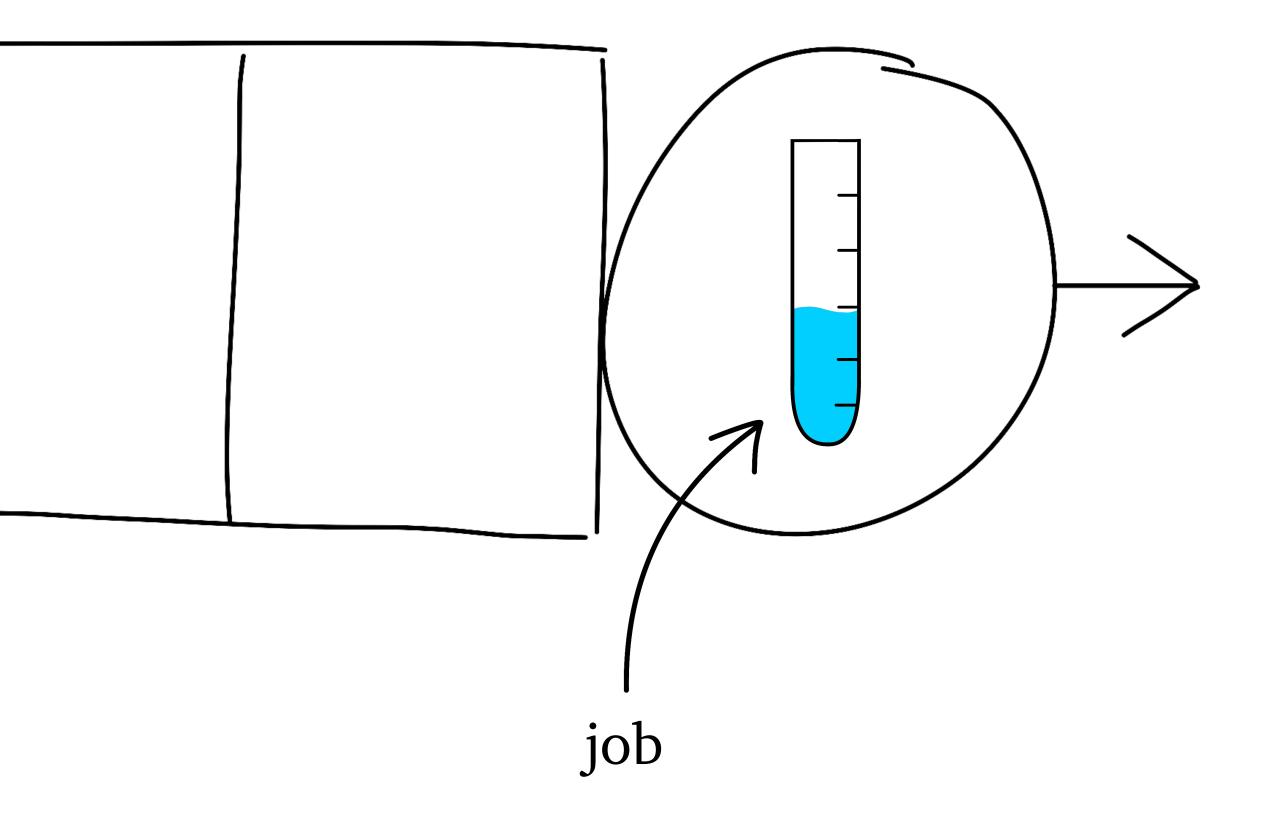


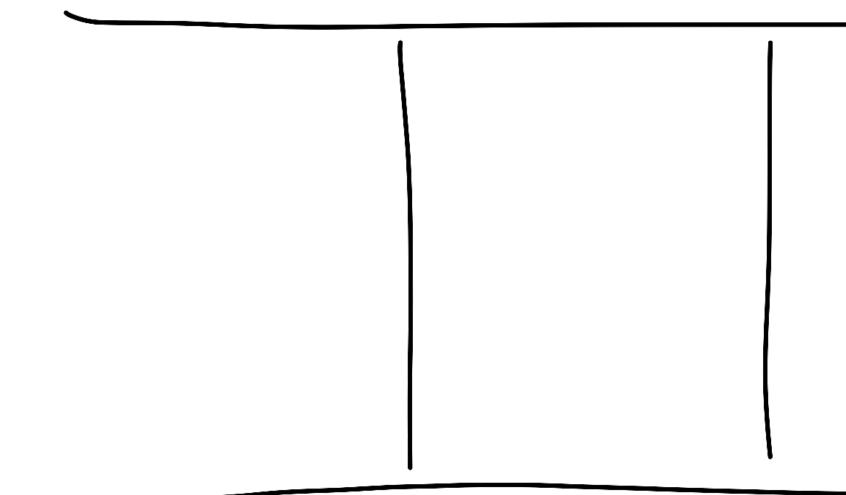


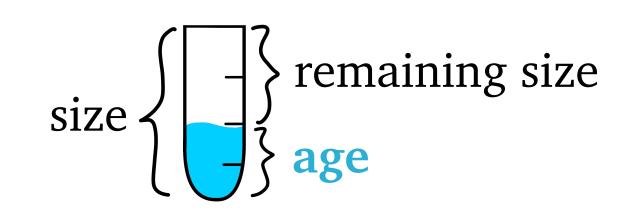
7

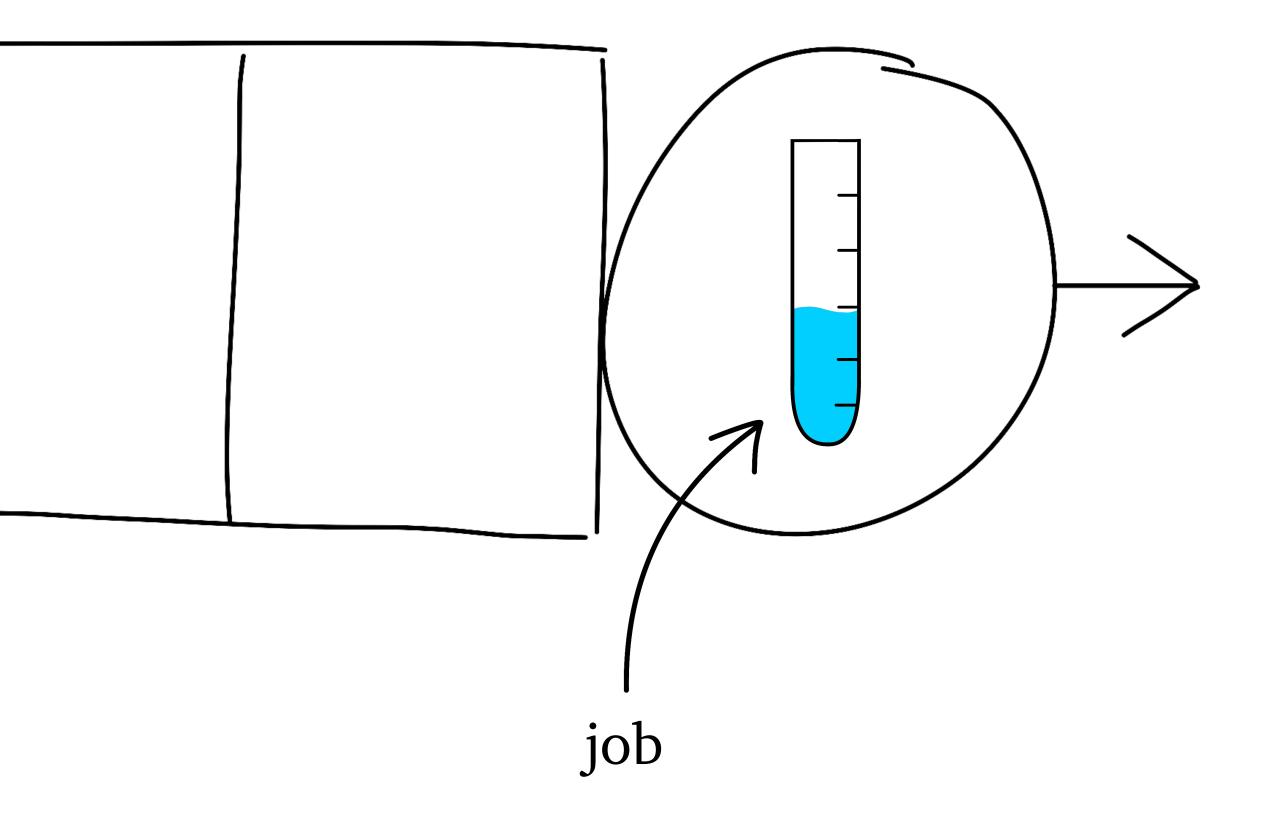


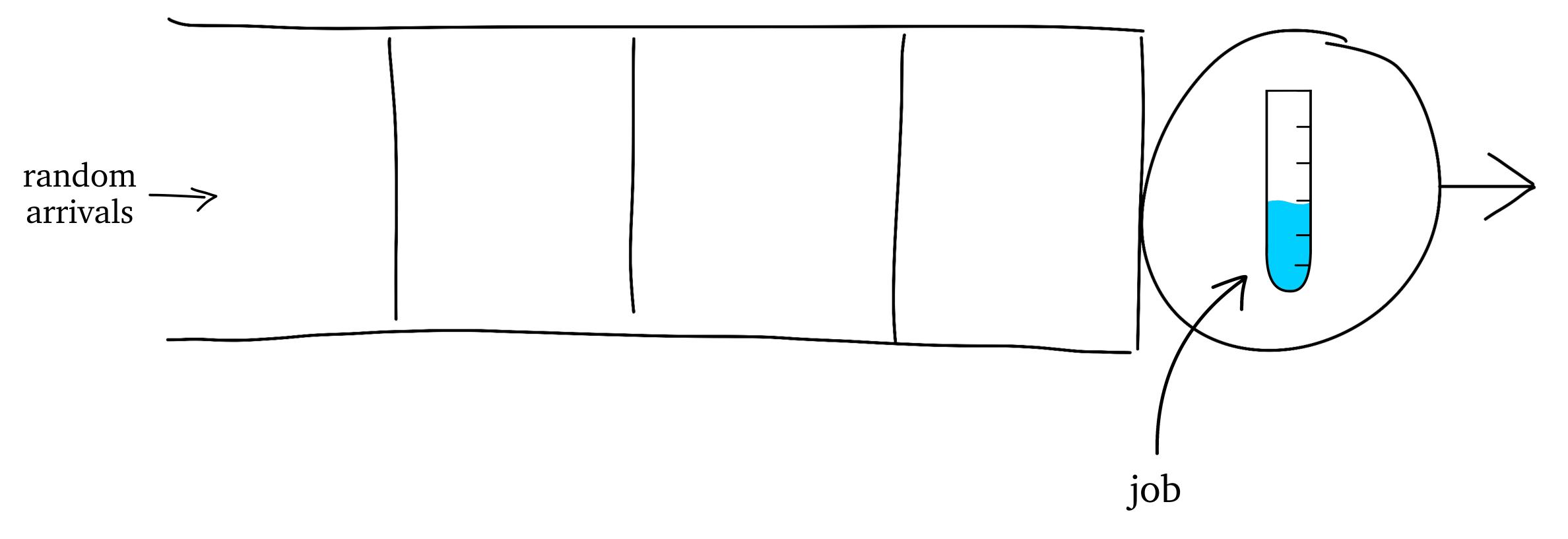


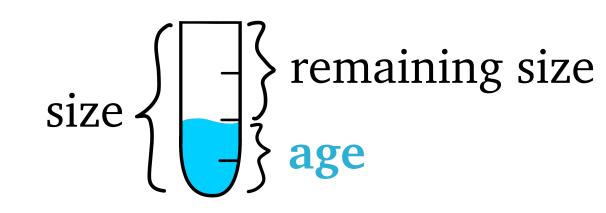




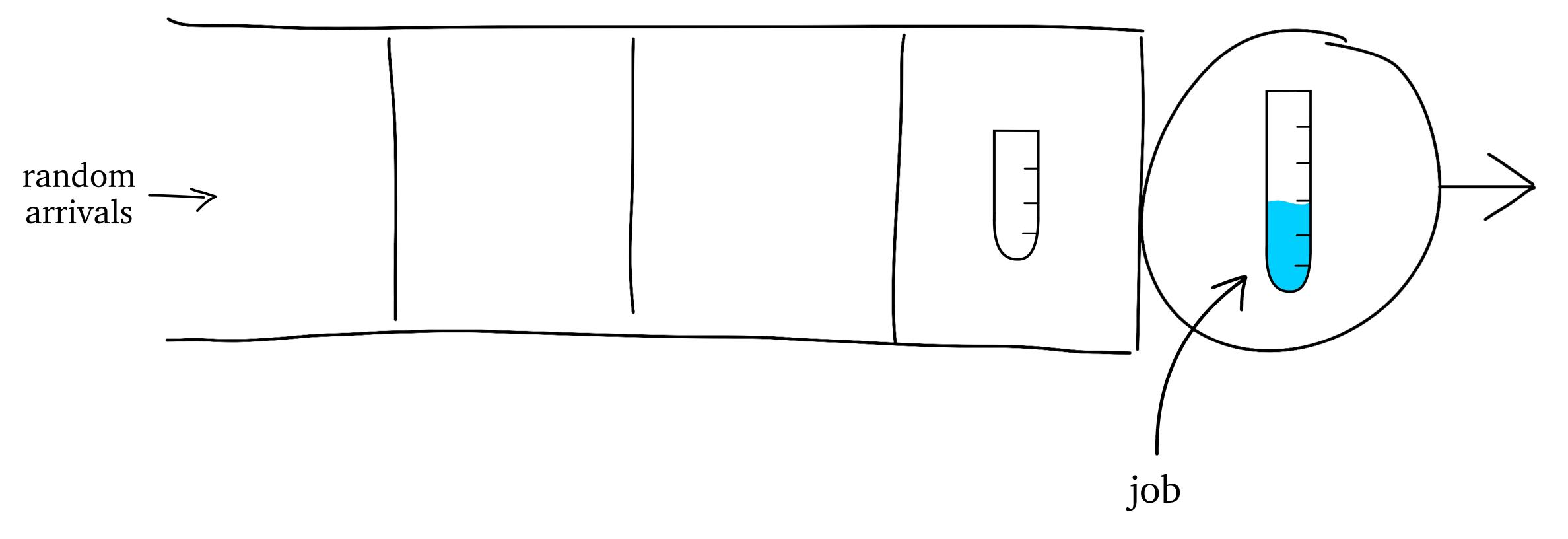


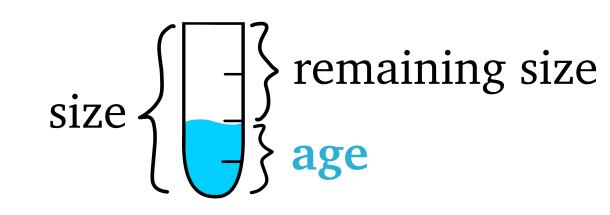




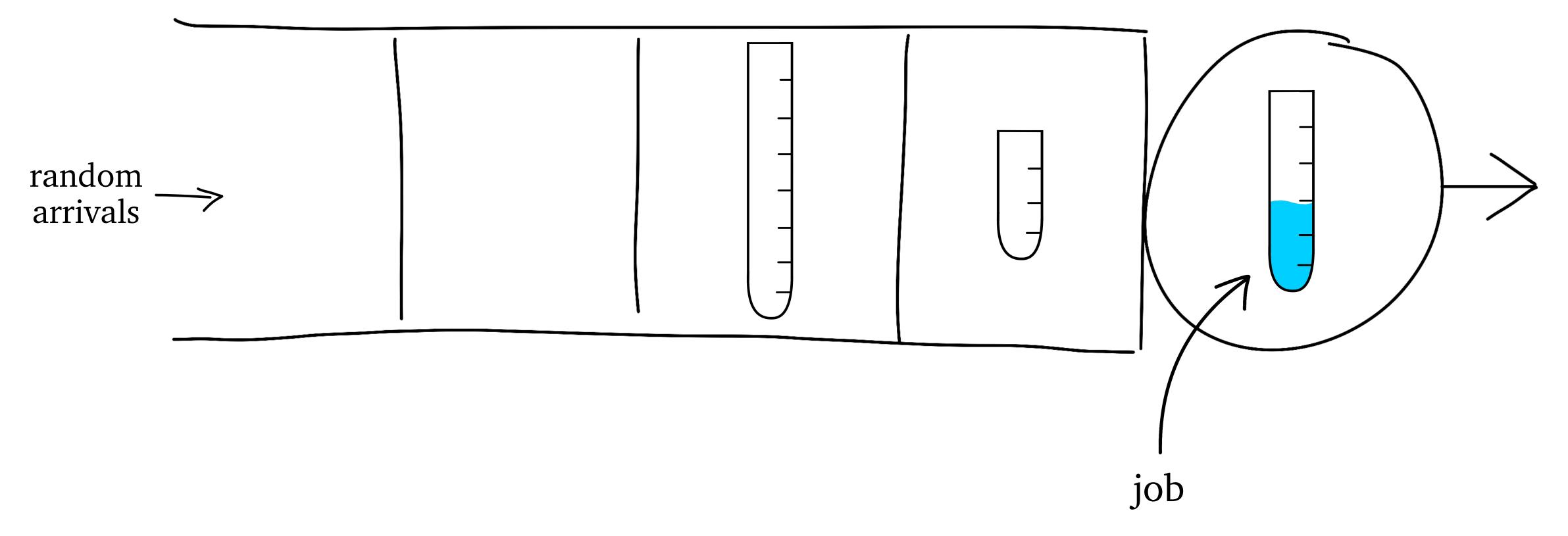


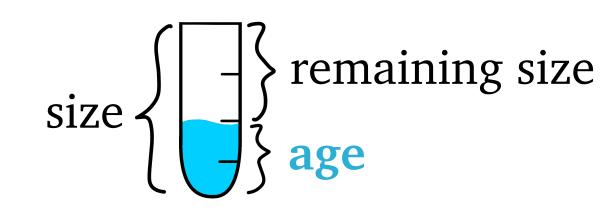
queue





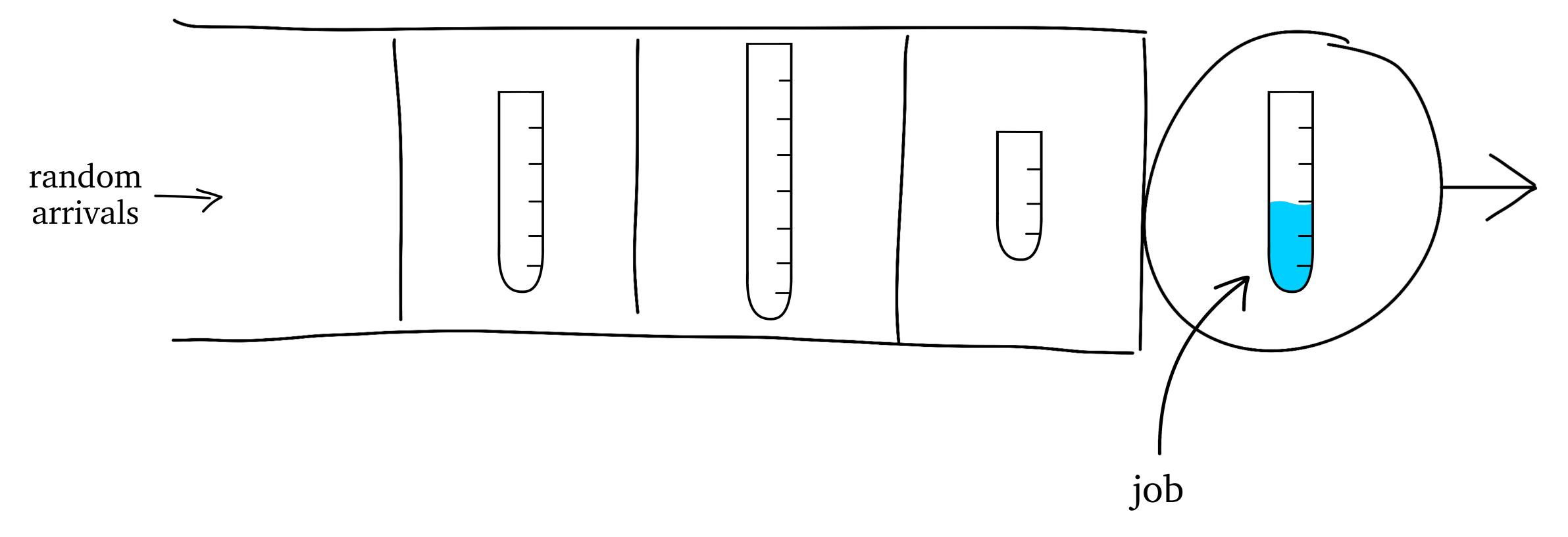
queue

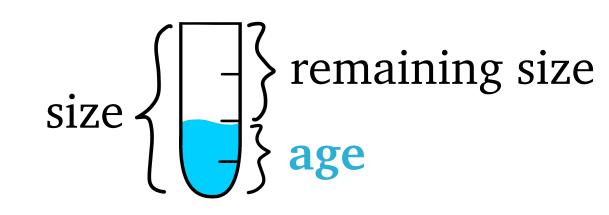




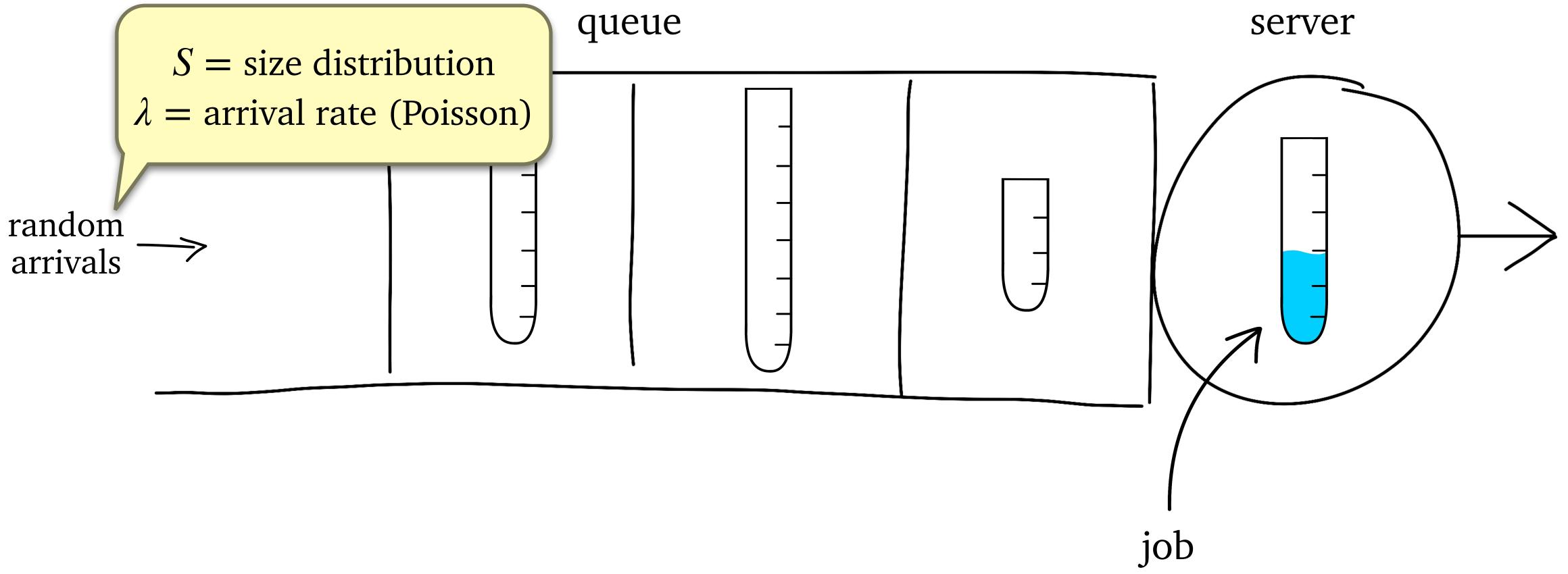
Scheduling in the M/G/1

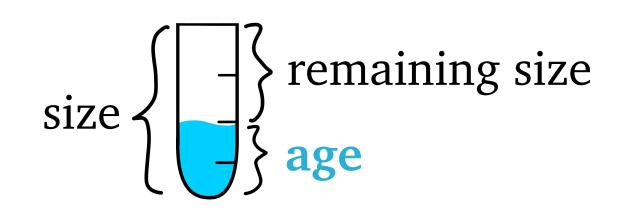
queue



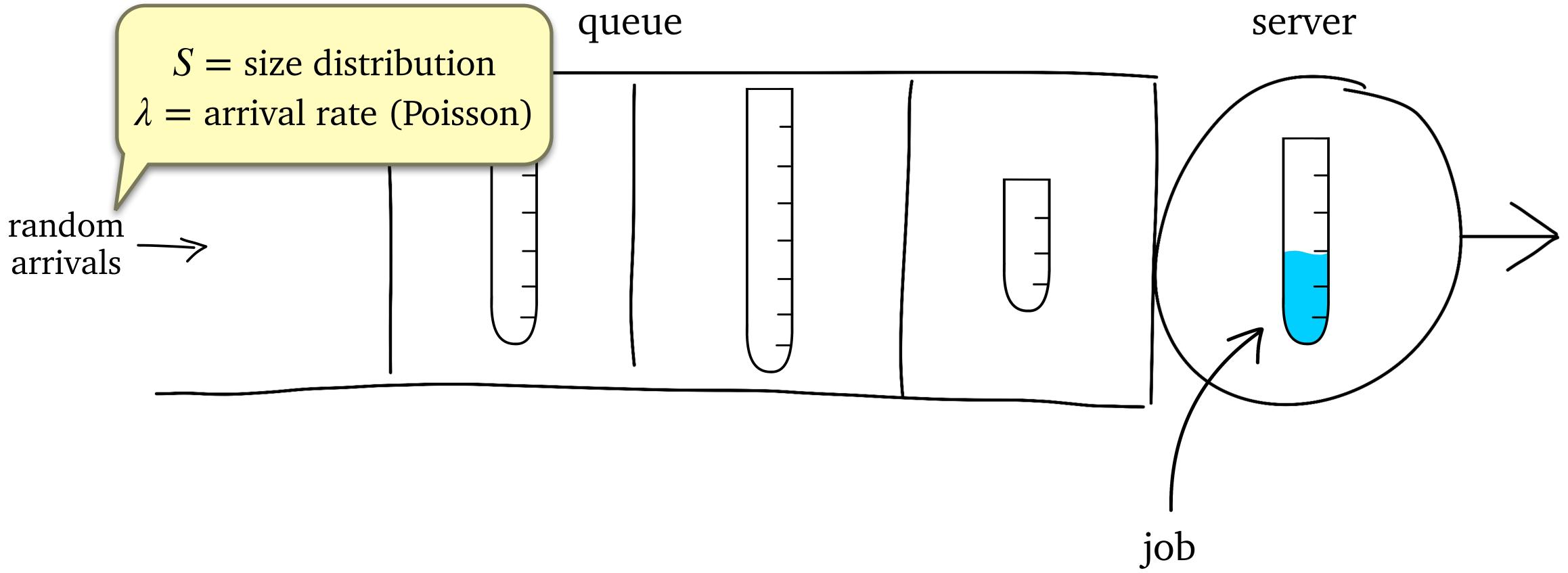


Scheduling in the M/G/1



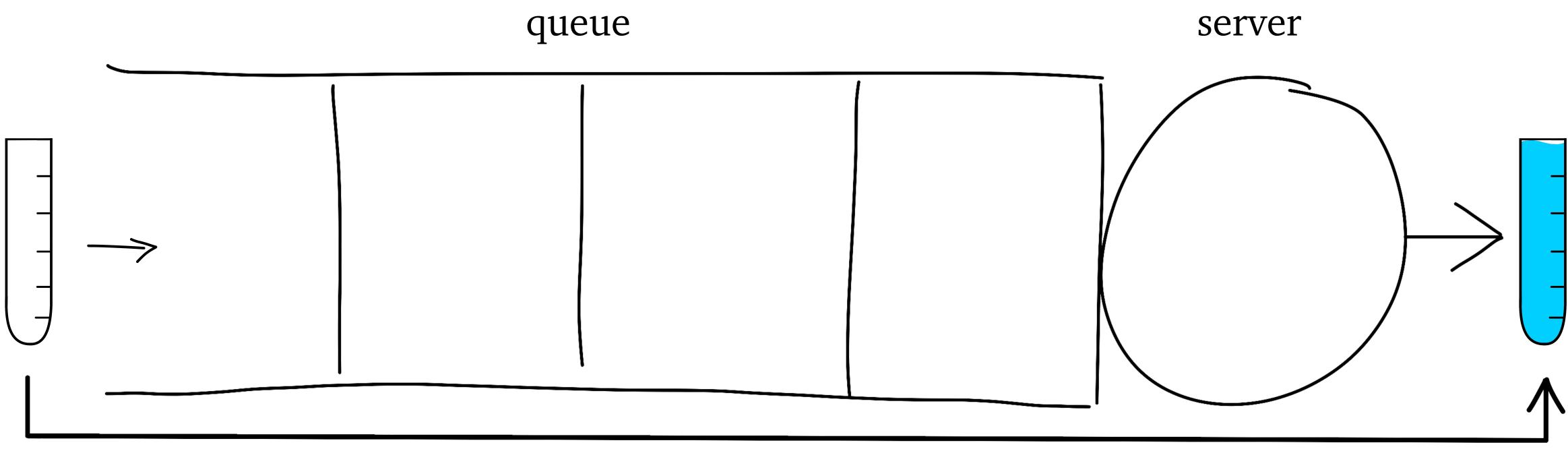


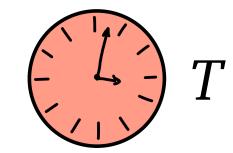
Scheduling in the M/G/1



Scheduling in the M/G/1

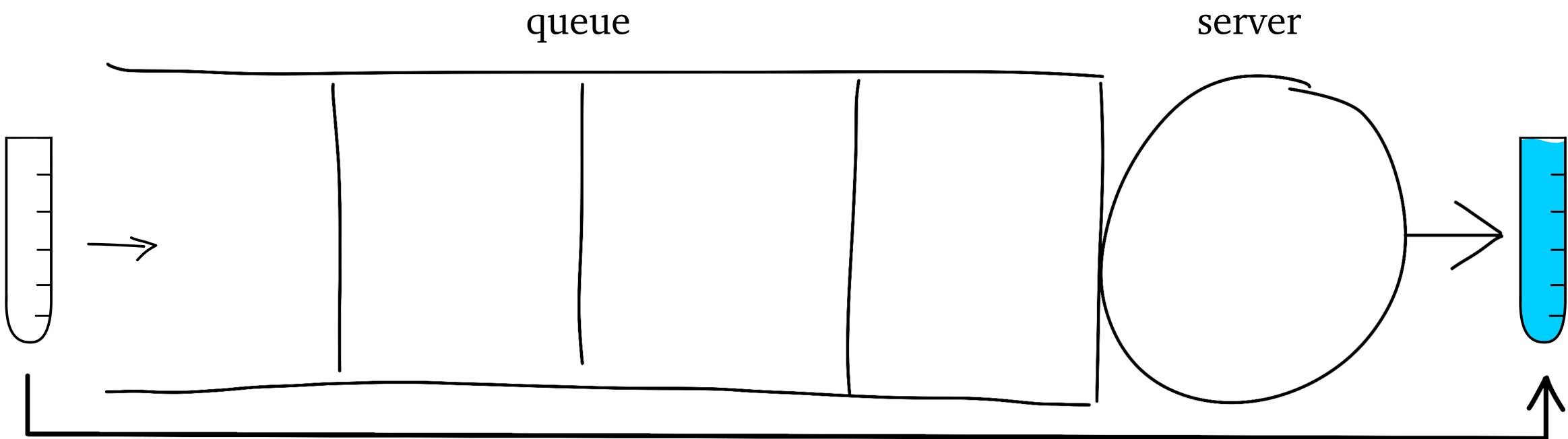
Scheduling: In which order should we serve jobs to minimize a desired metric?

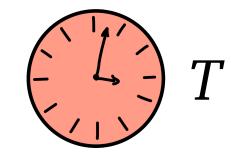




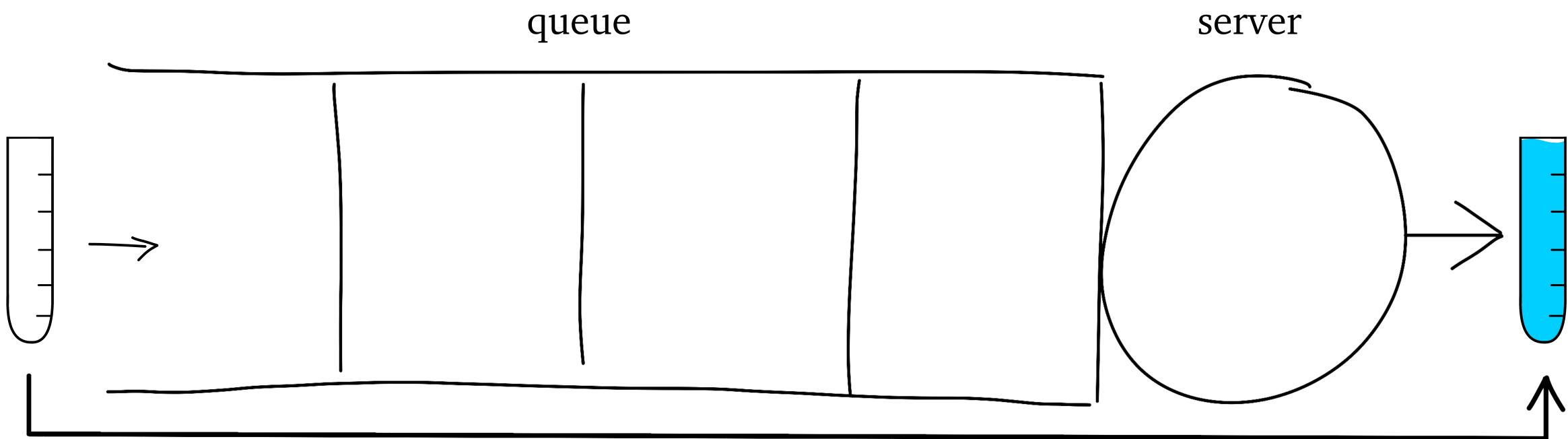
T = response time

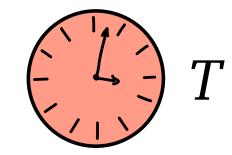
Scheduling: In which order should we serve jobs to minimize a desired metric?



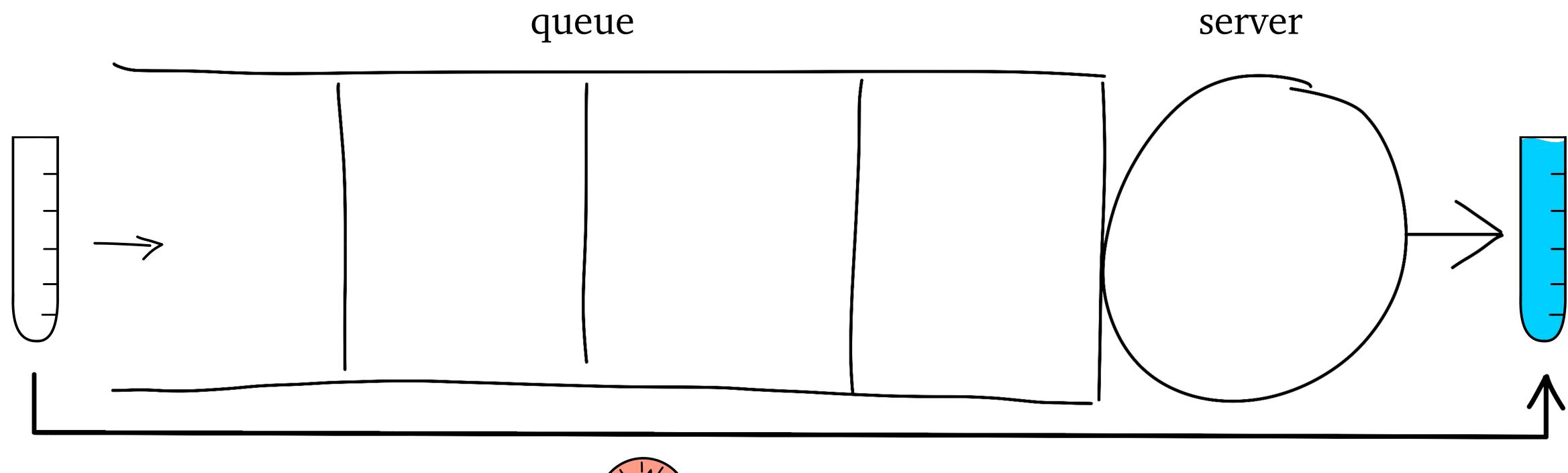


T = response time



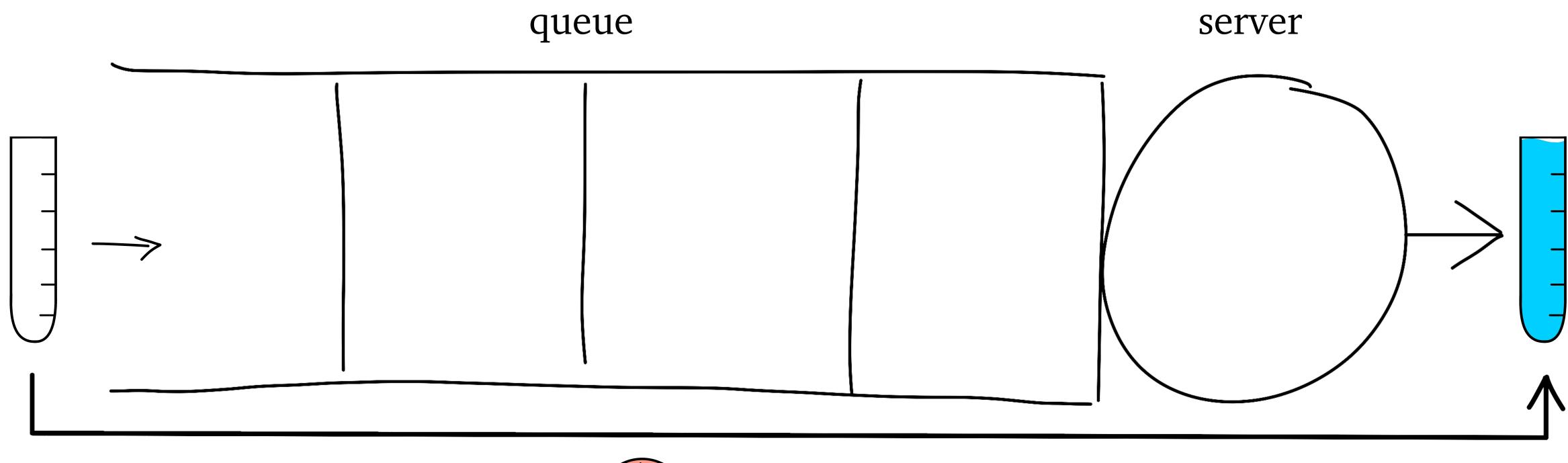


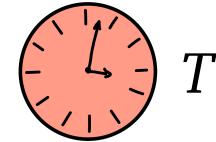
• mean response time, **E**[*T*]



4 -

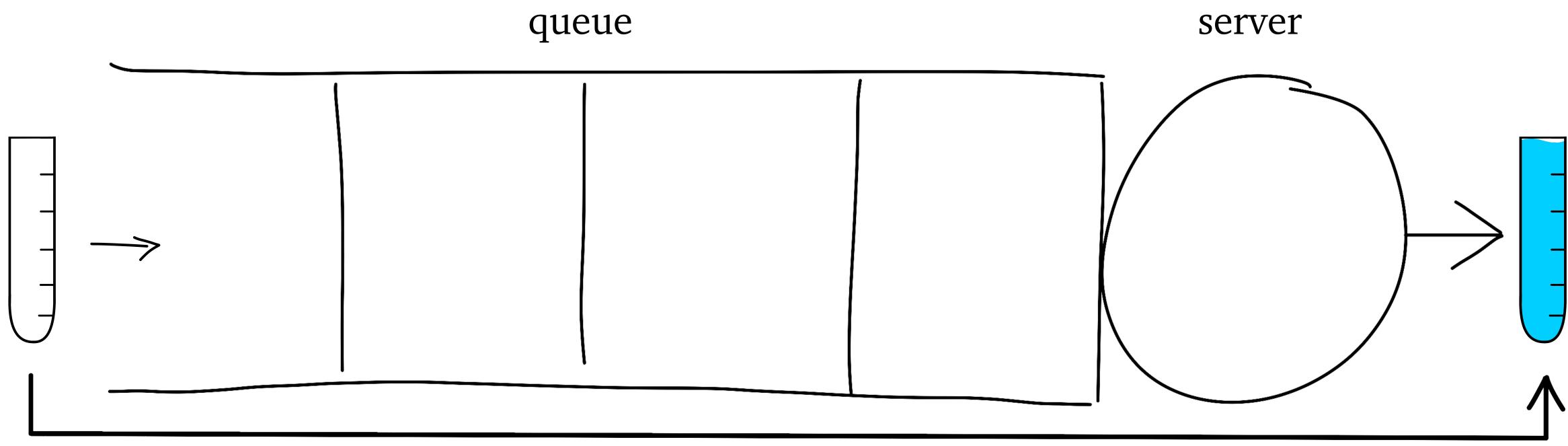
• mean response time, **E**[*T*]

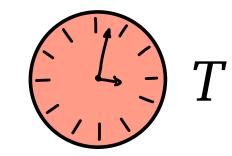




• mean response time, $\mathbf{E}[T]$

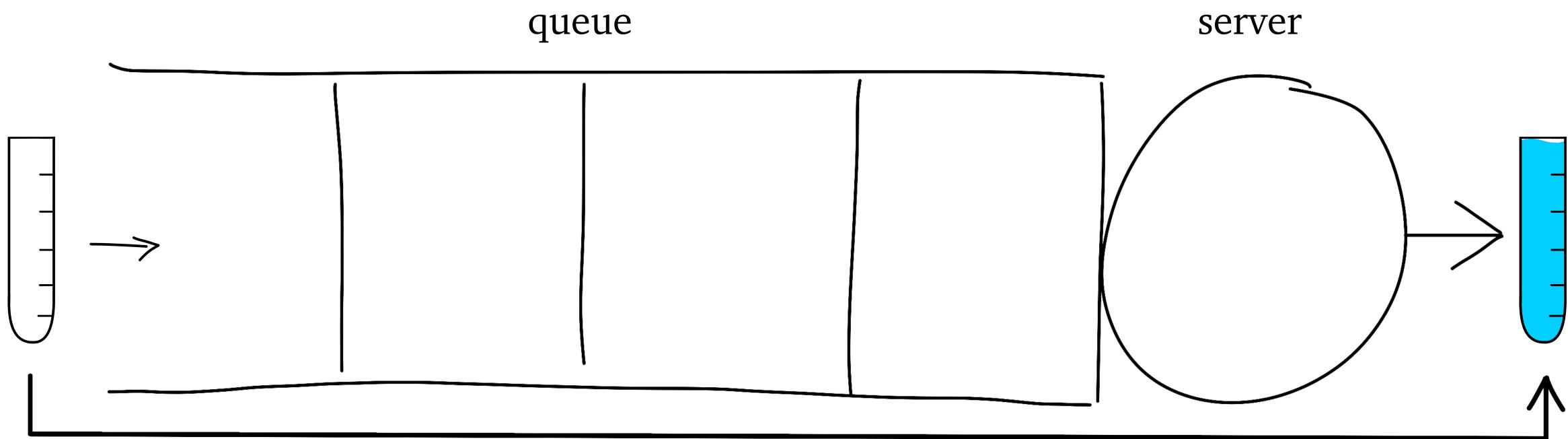
• **E**[*T*] with unknown job sizes

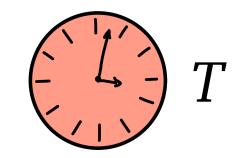




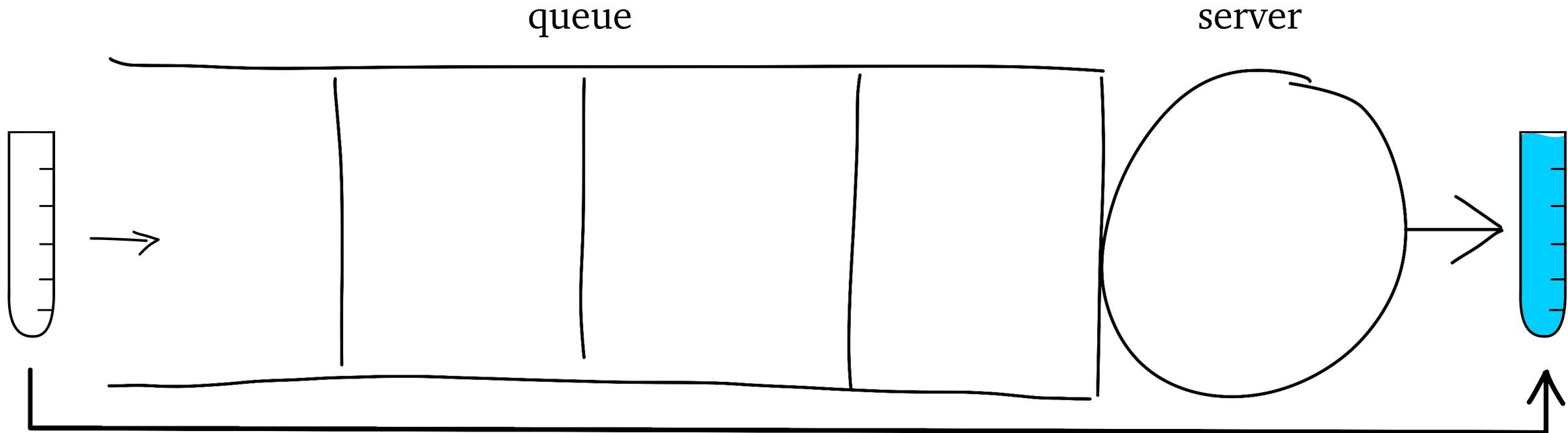
• mean response time, $\mathbf{E}[T]$

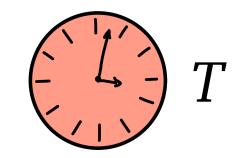
• **E**[*T*] with unknown job sizes



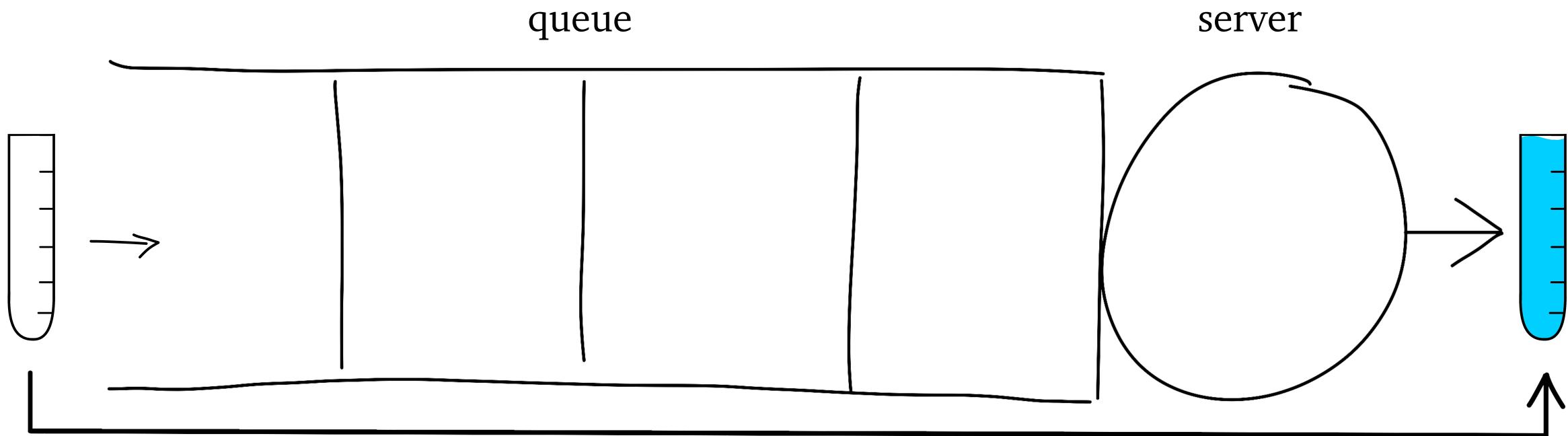


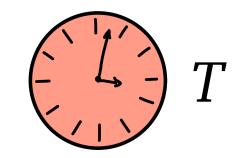
- mean response time, **E**[*T*]
- **E**[*T*] with unknown job sizes
- weighted $\mathbf{E}[T]$





- mean response time, $\mathbf{E}[T]$
- **E**[*T*] with unknown job sizes
- weighted $\mathbf{E}[T]$

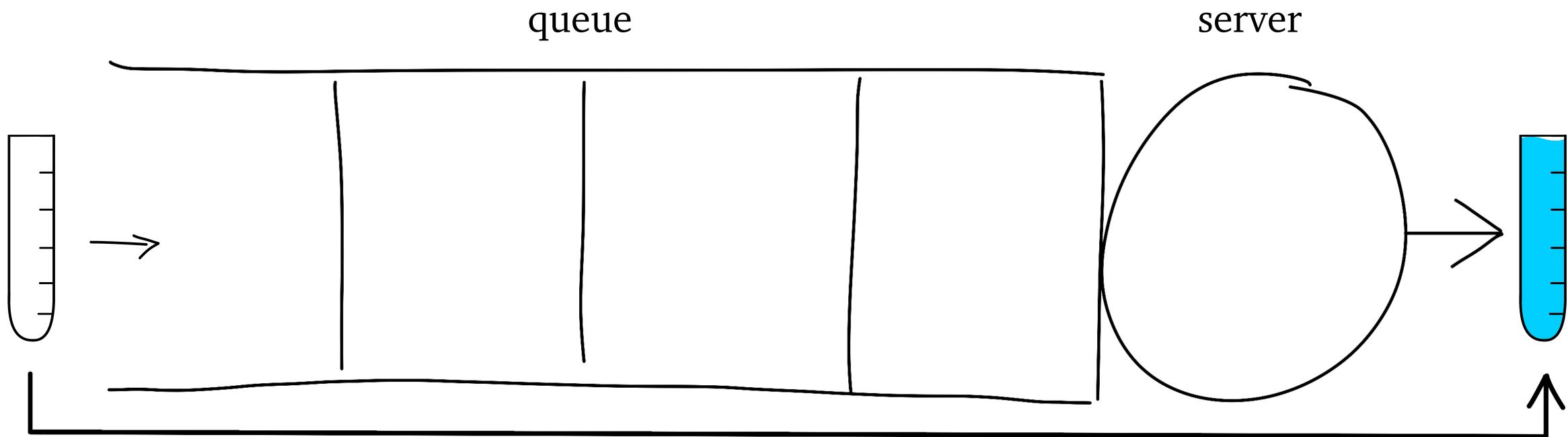


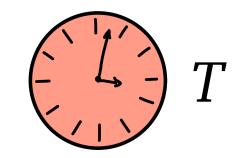


- mean response time, $\mathbf{E}[T]$
- **E**[*T*] with unknown job sizes
- weighted $\mathbf{E}[T]$

T = response time

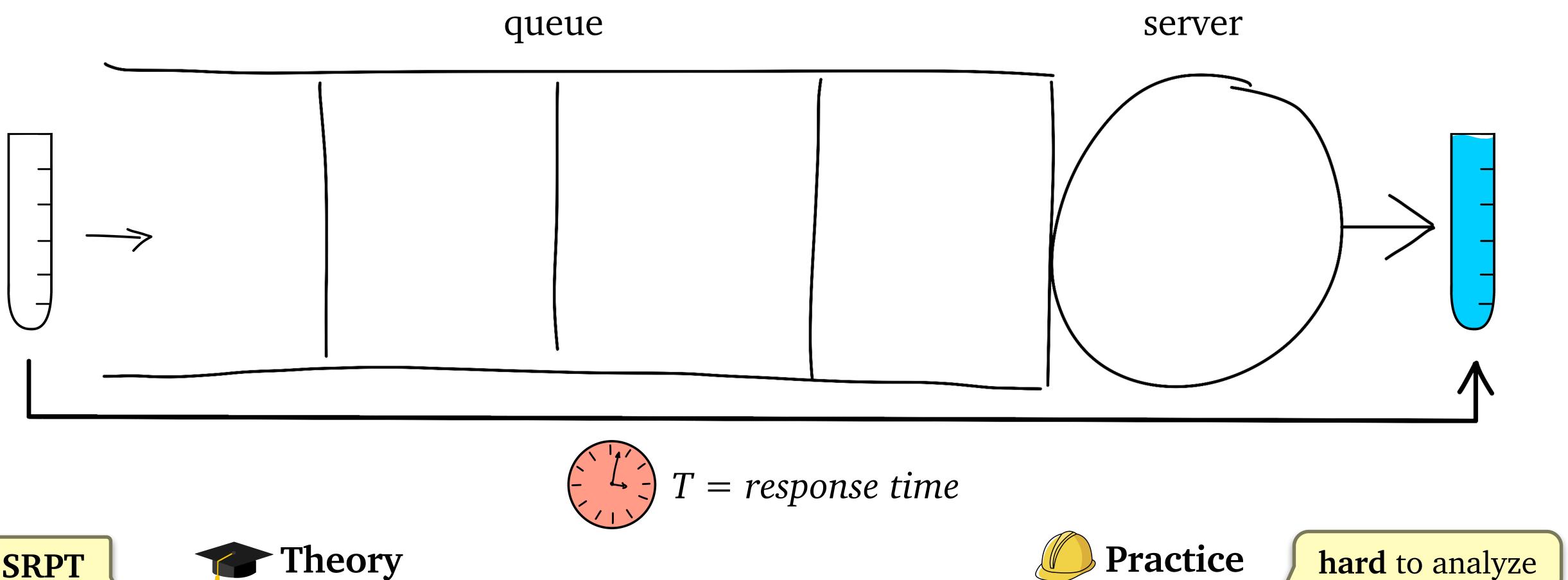
• tail latency, $\mathbf{P}[T > t]$ for large *t*

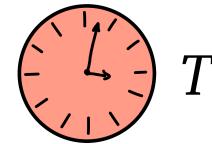




- mean response time, $\mathbf{E}[T]$
- **E**[*T*] with unknown job sizes
- weighted $\mathbf{E}[T]$

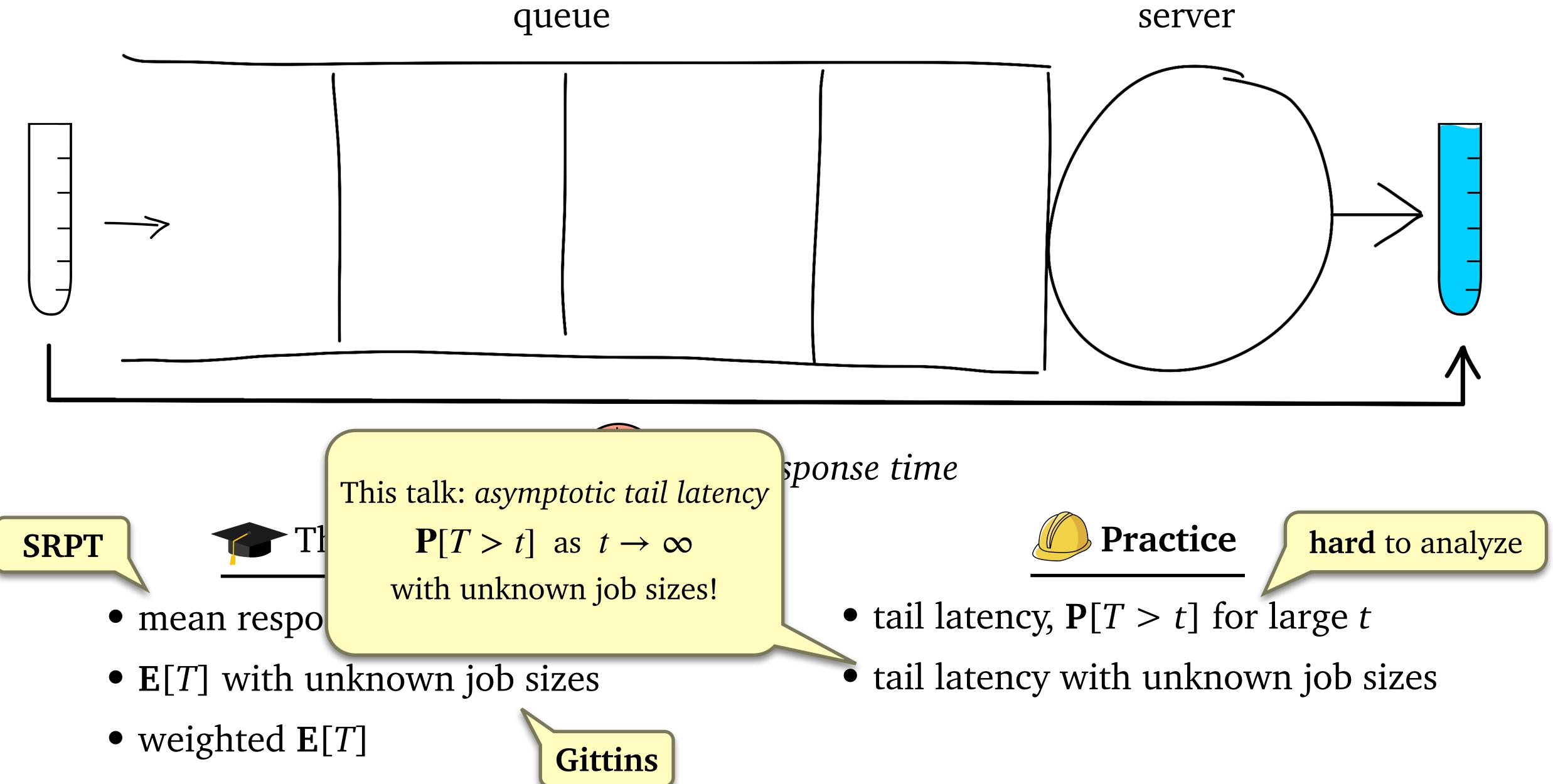
- tail latency, $\mathbf{P}[T > t]$ for large *t*
- tail latency with unknown job sizes





- mean response time, $\mathbf{E}[T]$
- **E**[*T*] with unknown job sizes
- weighted $\mathbf{E}[T]$

- tail latency, $\mathbf{P}[T > t]$ for large *t*
- tail latency with unknown job sizes



$$K_{\pi} = \sup_{\pi^*} \lim_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi^*} > t]}$$

$$K_{\pi} = \sup_{\pi^*} \lim_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi^*} > t]}$$

 $K_{\pi} < \infty$: weakly optimal

$$K_{\pi} = \sup_{\pi^*} \lim_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi^*} > t]}$$



$K_{\pi} = 1$: strongly optimal

$$K_{\pi} = \sup_{\pi^*} \lim_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi^*} > t]}$$

•
$$K_{\pi} < \infty$$
: weakly optimal

 $K_{\pi} = 1$: strongly optimal

Which policies are weakly optimal?

Which policies are weakly optimal?

Heavy-Tailed Size Distribution

- **PS** (Processor Sharing)
- LAS (Least Attained Service)
- **SRPT** (Shortest Remaining Processing Time)
- PLCFS (Preemptive Last Come First Serve)

+ Λ_{π} – 1. strongly optimul

Heavy-Tailed Size Distribution

• **PS** (Processor Sharing)

 $"P[S > x] \sim \Omega(x^{-\beta})"$

- LAS (Least Attained Service)
- **SRPT** (Shortest Remaining Processing Time)
- PLCFS (Preemptive Last Come First Serve)

 $\pi_{\pi} = 1$. strongly optimul

are weakly optimal?

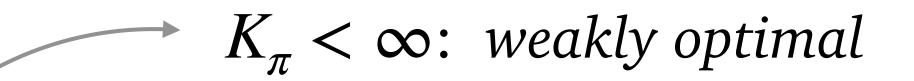
$$K_{\pi} = \sup_{\pi^*} \lim_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi^*} > t]}$$

Heavy-Tailed Size Distribution

• **PS** (Processor Sharing)

 $"P[S > x] \sim \Omega(x^{-\beta})"$

- LAS (Least Attained Service)
- **SRPT** (Shortest Remaining Processing Time)
- PLCFS (Preemptive Last Come First Serve)

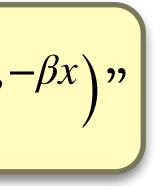


$\longrightarrow K_{\pi} = 1$: strongly optimal

are weakly optimal?

 $"P[S > x] \sim \mathcal{O}(e^{-\beta x})"$

Light-Tailed Size Distribution



$$K_{\pi} = \sup_{\pi^*} \lim_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi^*} > t]}$$

Heavy-Tailed Size Distribution

• **PS** (Processor Sharing)

 $"P[S > x] \sim \Omega(x^{-\beta})"$

- LAS (Least Attained Service)
- **SRPT** (Shortest Remaining Processing Time)
- PLCFS (Preemptive Last Come First Serve)

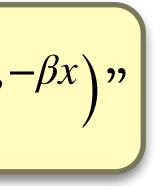
 $\longrightarrow K_{\pi} = 1$: strongly optimal

are weakly optimal?

 $"P[S > x] \sim \mathcal{O}(e^{-\beta x})"$

Light-Tailed Size Distribution

• FCFS (First Come First Serve)



What does it mean to minimize asymptotic tail latency?

$$K_{\pi} = \sup_{\pi^*} \lim_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi^*} > t]}$$

Heavy-Tailed Size Distribution

• **PS** (Processor Sharing)

 $"P[S > x] \sim \Omega(x^{-\beta})"$

- LAS (Least Attained Service)
- **SRPT** (Shortest Remaining Processing Time)
- PLCFS (Preemptive Last Come First Serve)

$$K_{\pi} < \infty$$
: weakly optimal

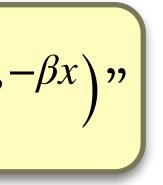
 $\longrightarrow K_{\pi} = 1: strongly optimal$

are weakly optimal?

 $"P[S > x] \sim \mathcal{O}(e^{-\beta x})"$

Light-Tailed Size Distribution

- FCFS (First Come First Serve)
- Nudge (Grosof et al. 2021)
- Boost (Yu & Scully 2024)



What does it mean to minimize asymptotic tail latency?

$$K_{\pi} = \sup_{\pi^*} \lim_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi^*} > t]}$$

Which policies are weakly optimal?

Heavy-Tailed Size Distribution

- PS (Processor Sharing)
 LAS (Least Attained Service) strongly optimal
 - (Shortest Remaining Processing Time)
 - PLCFS (Preemptive Last Come First Serve)

$$K_{\pi} < \infty$$
: weakly optimal

 $\longrightarrow K_{\pi} = 1$: strongly optimal

- FCFS (First Come First Serve)
- Nudge (Grosof et al. 2021)
- Boost (Yu & Scully 2024)

strongly

optimal

What does it mean to minimize asymptotic tail latency? (without job size information)

$$K_{\pi} = \sup_{\pi^*} \lim_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi^*} > t]}$$

Heavy-Tailed Size Distribution

- PS (Processor Sharing)
 LAS (Least Attained Service) strongly optimal
 - (Shortest Remaining Processing Time)
 - PLCFS (Preemptive Last Come First Serve)

 $\rightarrow K_{\pi} = 1$: strongly optimal

Which policies are weakly optimal?

strongly

optimal

- FCFS (First Come First Serve)
- Nudge (Grosof et al. 2021)
- Boost (Yu & Scully 2024)

What does it mean to minimize asymptotic tail latency? (without job size information)

$\sup_{\pi^* \in \text{UnknownSize}} \lim_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi^*} > t]}$ $K_{\pi} =$

Heavy-Tailed Size Distribution

- PS (Processor Sharing)
 LAS (Least Attained Service) strongly optimal
 - (Shortest Remaining Processing Time)
 - PLCFS (Preemptive Last Come First Serve)

 $K_{\pi} = 1$: strongly optimal

Which policies are weakly optimal?

strongly

optimal

- FCFS (First Come First Serve)
- Nudge (Grosof et al. 2021)
- Boost (Yu & Scully 2024)

What does it mean to minimize asymptotic tail latency? (without job size information)

$: \sup_{\pi^* \in \text{UnknownSize}} \lim_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi^*} > t]}$ $K_{\pi} =$

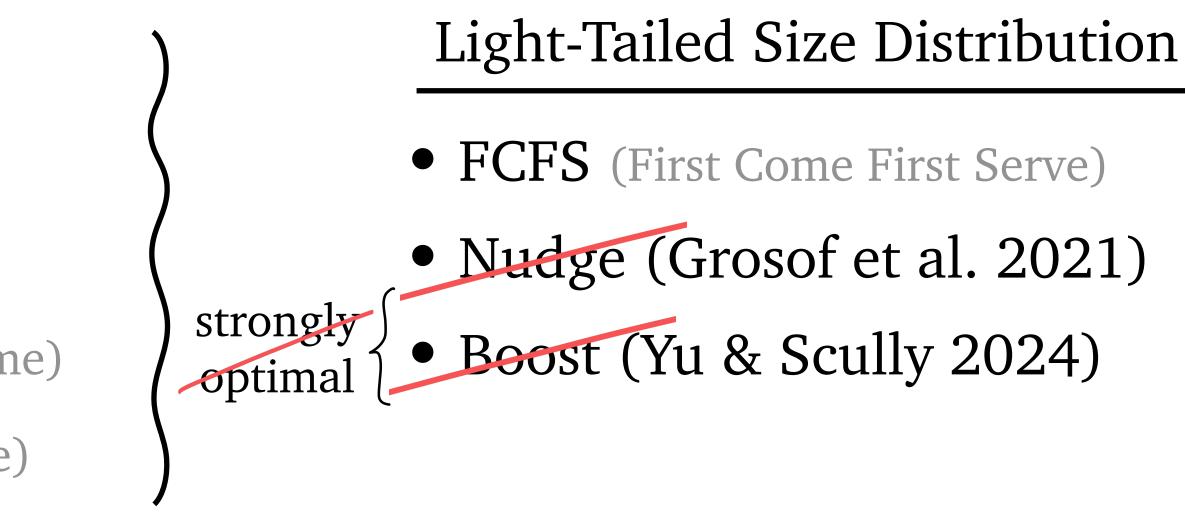
Which policies are weakly optimal?

Heavy-Tailed Size Distribution

- PS (Processor Sharing)
 LAS (Least Attained Service) strongly optimal
 - (Shortest Remaining Processing Time)
 - PLCFS (Preemptive Last Come First Serve)

$$\twoheadrightarrow K_{\pi} < \infty$$
: weakly optimal

$$\longrightarrow K_{\pi} = 1$$
: strongly optimal



Our contribution: new policy + proof of strong optimality GittinsBoost

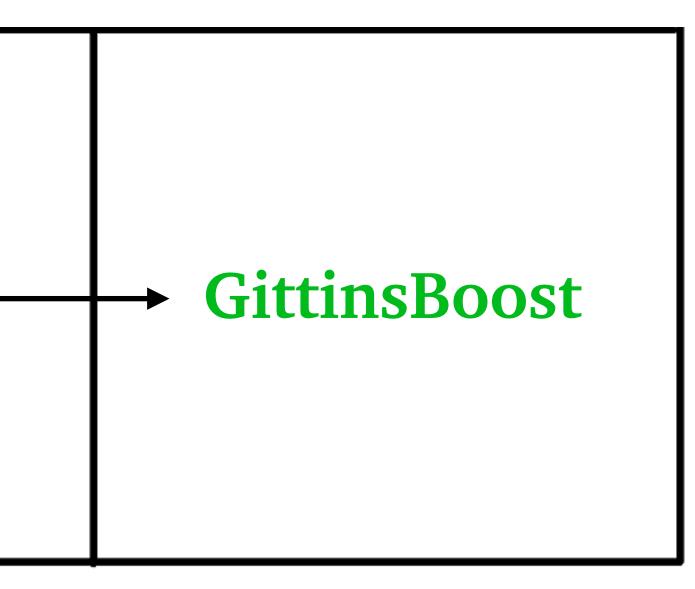
known sizes

 $\lim \mathbf{P}[T > t]$ $t \rightarrow \infty$ (light-tailed)

Boost

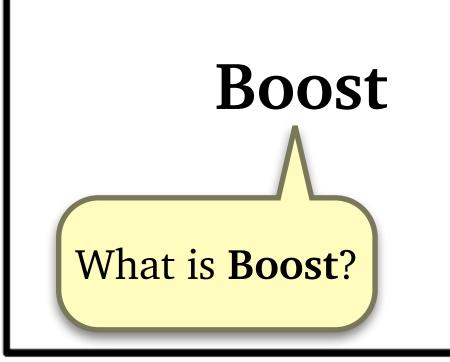
How do we generalize Boost to the unknown size setting

unknown sizes



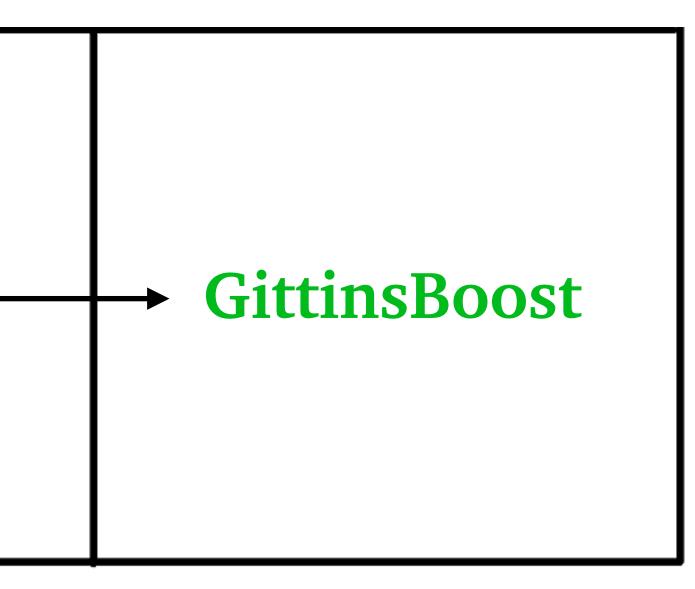
known sizes

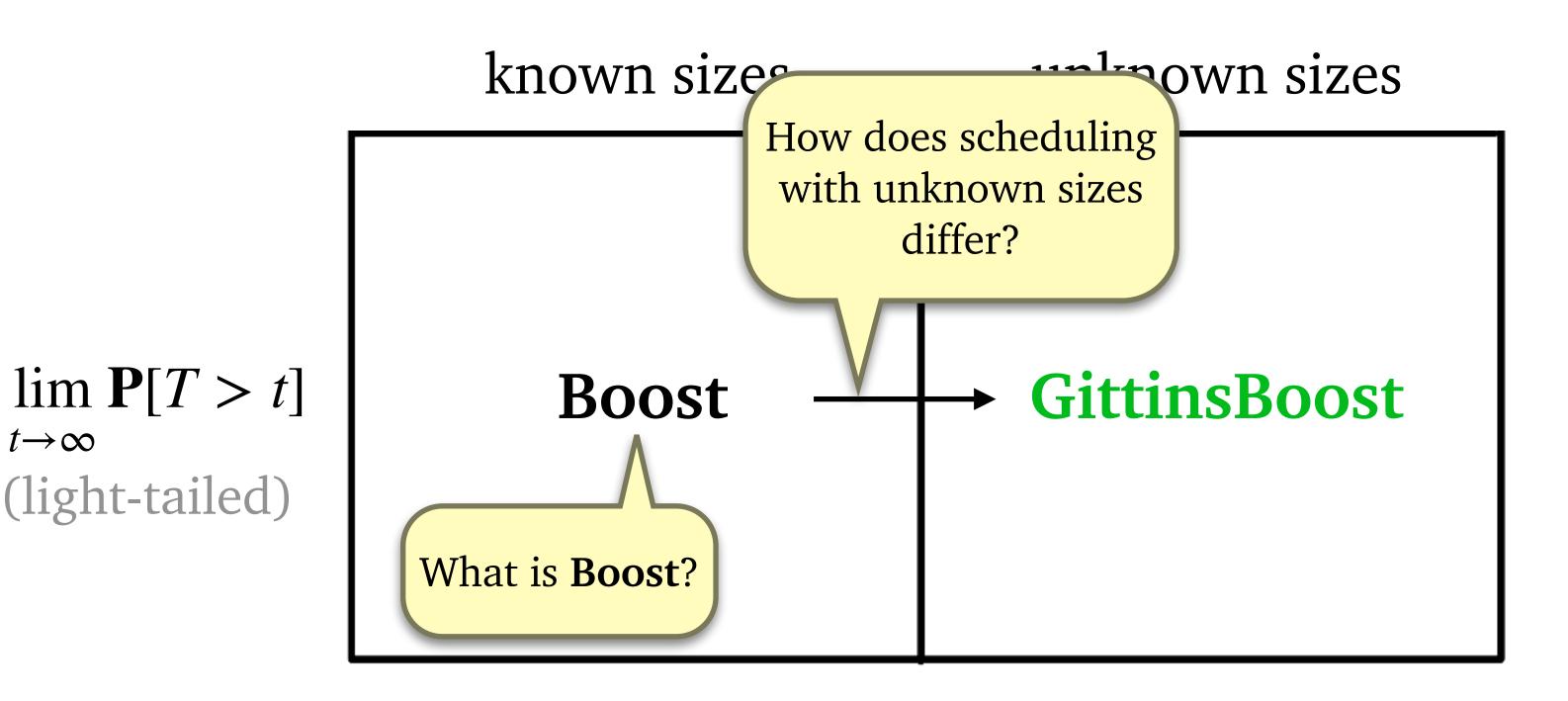
$\lim \mathbf{P}[T > t]$ $t \rightarrow \infty$ (light-tailed)



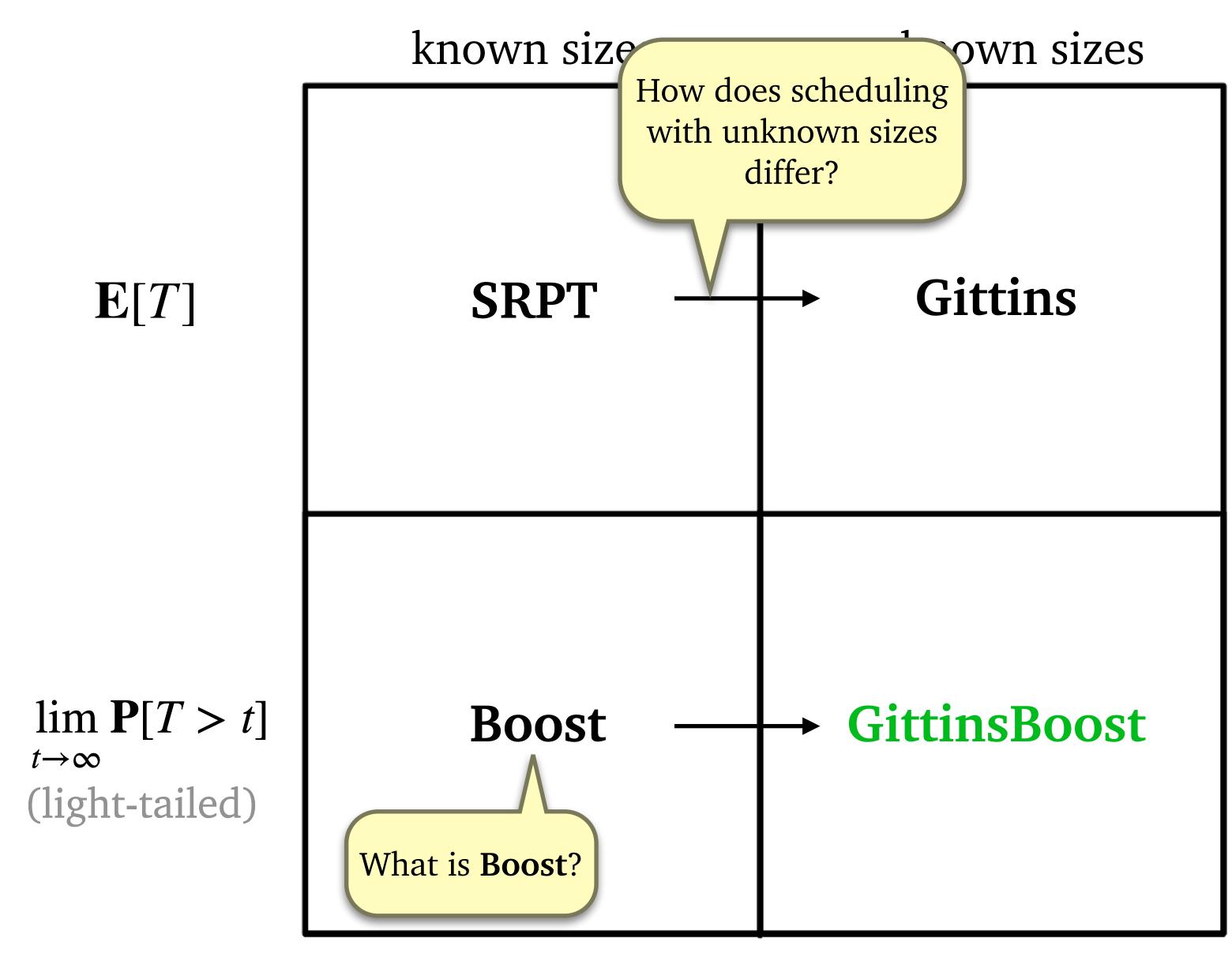
How do we generalize Boost to the unknown size setting

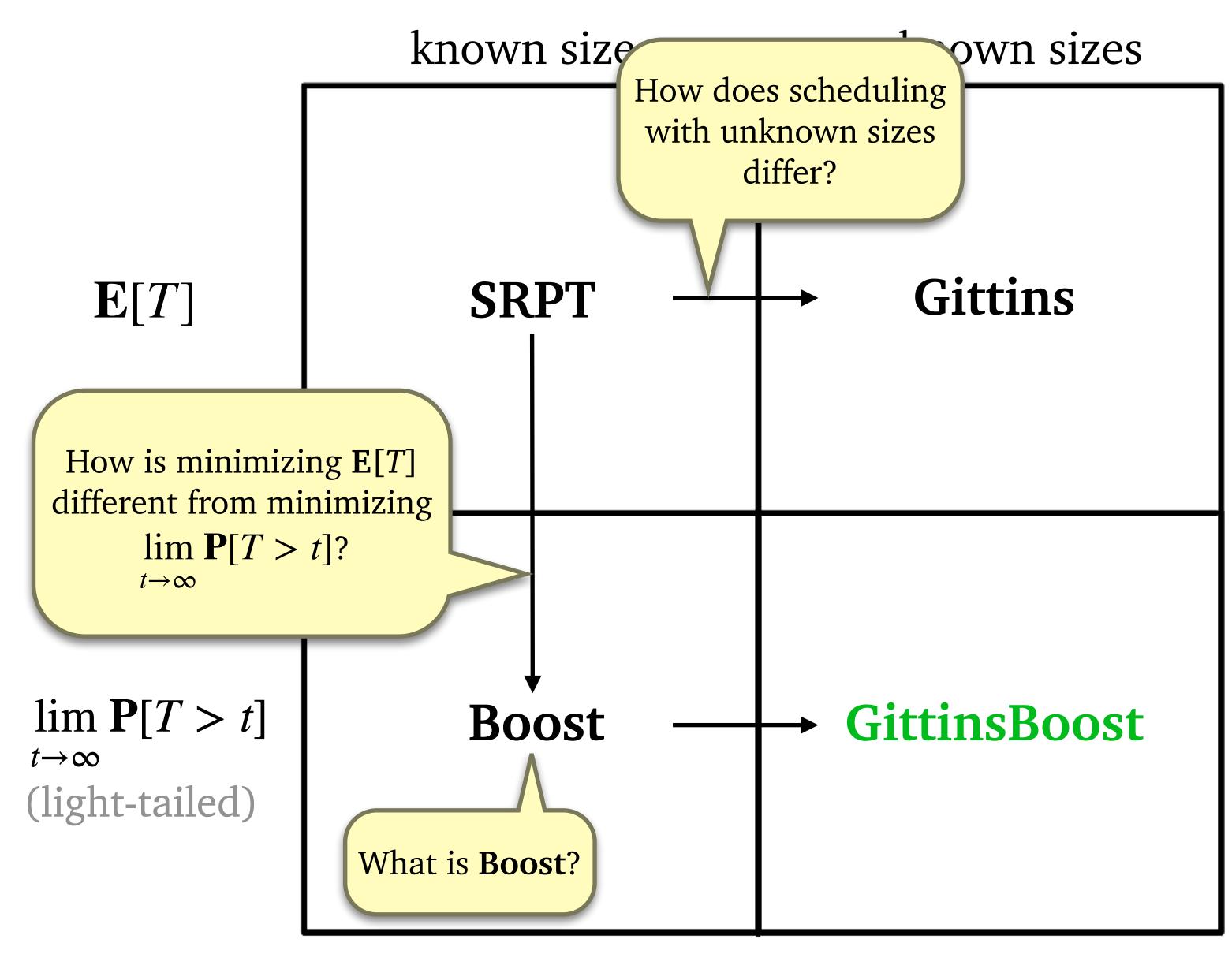
unknown sizes

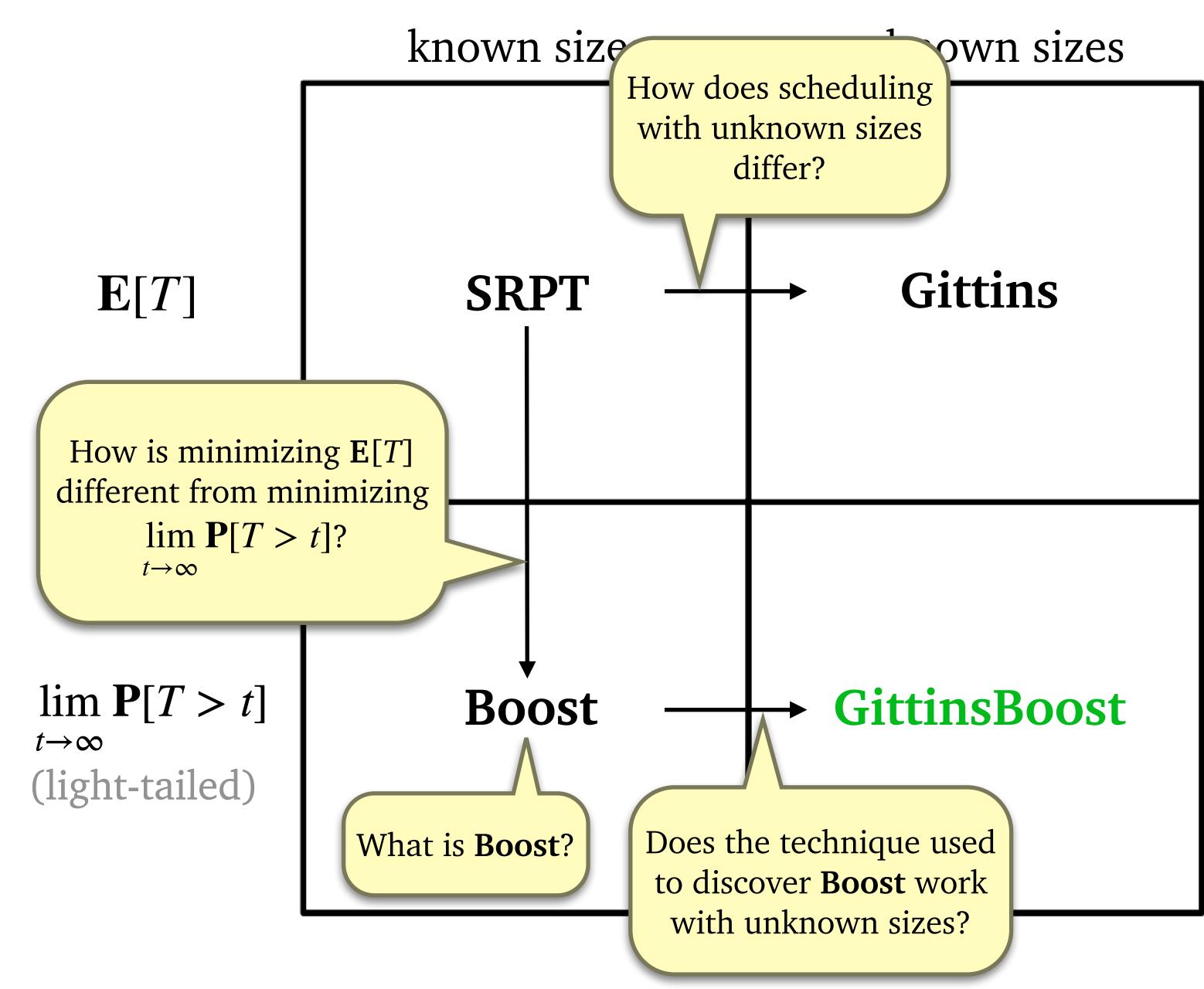


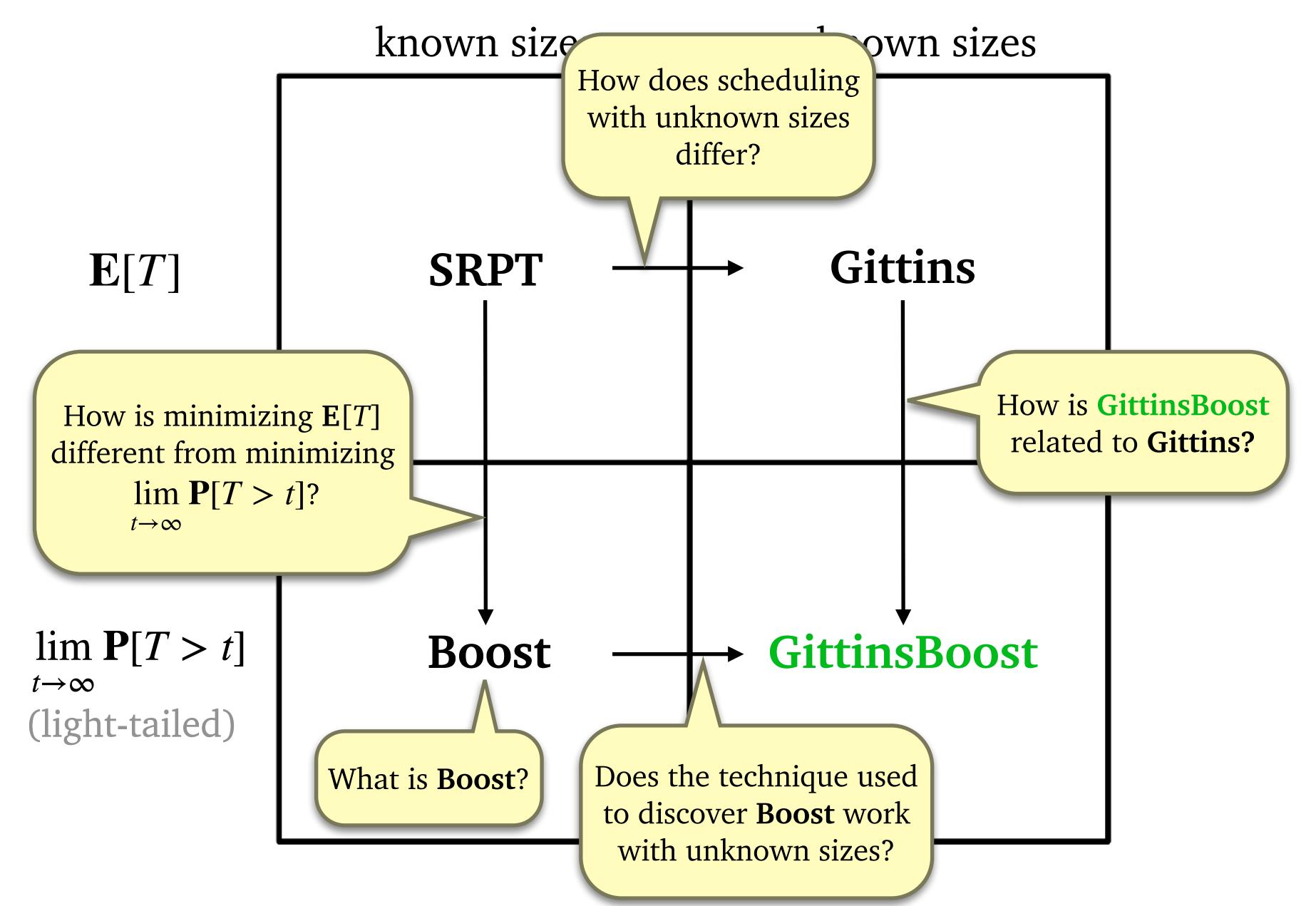


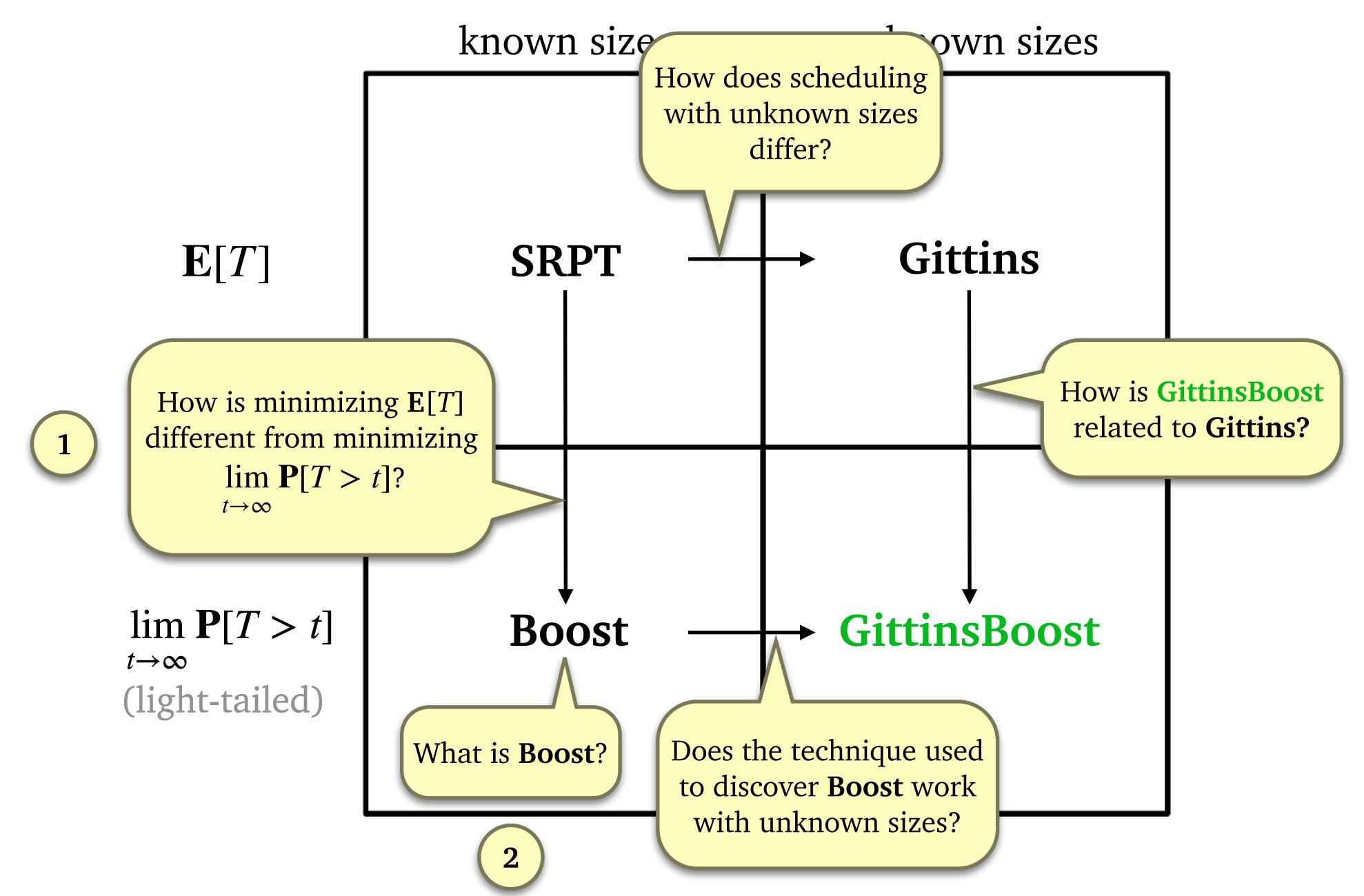
How do we generalize Boost to the unknown size setting











Minimize **E**[*T*]

Minimize $\mathbf{P}[T > t]$

Minimize **E**[*T*]

• Don't want small jobs stuck behind large job

Minimize $\mathbf{P}[T > t]$

52

Minimize **E**[*T*]

• Don't want small jobs stuck behind large job

Minimize $\mathbf{P}[T > t]$

• Don't want small jobs stuck behind large job

Minimize **E**[*T*]

• Don't want small jobs stuck behind large job

Minimize $\mathbf{P}[T > t]$

- Don't want small jobs stuck behind large job
- Don't want large jobs to be overly delayed

Minimize **E**[*T*]

• Don't want small jobs stuck behind large job

Heavy Tails: basically doesn't matter

Minimize $\mathbf{P}[T > t]$

- Don't want small jobs stuck behind large job
- Don't want large jobs to be overly delayed

Minimize **E**[*T*]

• Don't want small jobs stuck behind large job

Heavy Tails: basically doesn't matter

Minimize $\mathbf{P}[T > t]$

- Don't want small jobs stuck behind large job
- Don't want large jobs to be overly delayed

Light Tails: very important

Minimize $\mathbf{E}[T]$

• Don't want small jobs stuck behind large job

> **Heavy Tails:** basically doesn't matter

Minimize $\mathbf{P}[T > t]$

- Don't want small jobs stuck behind large job
- Don't want large jobs to be overly delayed

Light Tails: very important

Boost: a way to balance this tradeoff!

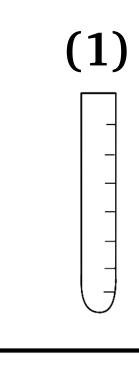
boosted arrival time = arrival time - boost

boost is determined by *boost function* $b(s) \ge 0$ that maps job size to boost.

Boost serves jobs in order of ascending boosted arrival time:

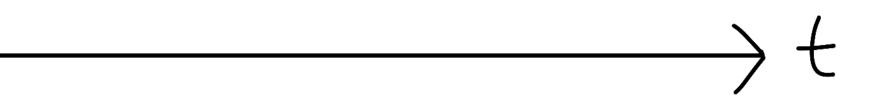
boosted arrival time = arrival time - boost

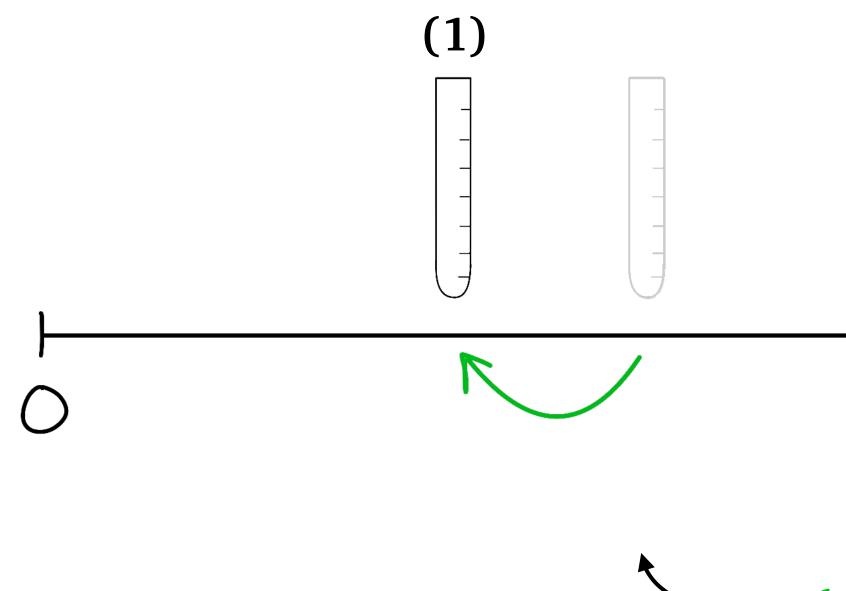
boost is determined by *boost function* $b(s) \ge 0$ that maps job size to boost.



Boost serves jobs in order of ascending boosted arrival time:

boosted arrival time = arrival time - boost

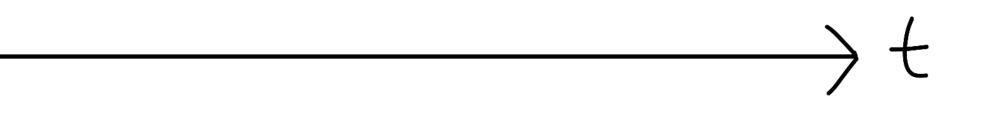


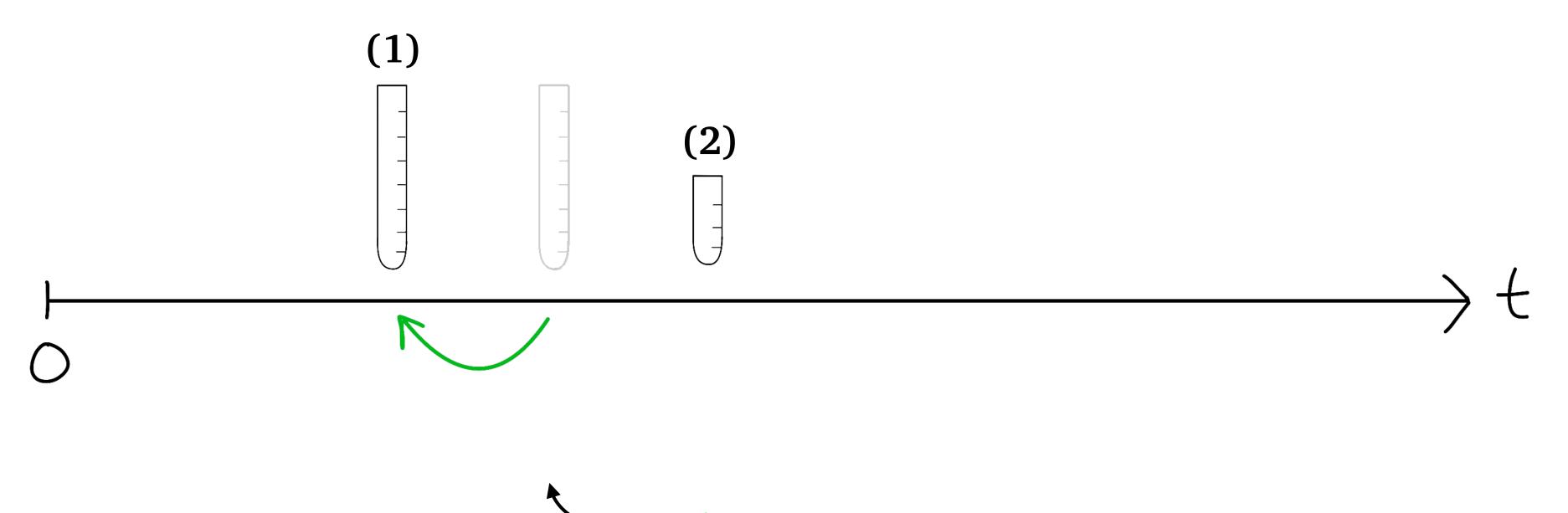


Boost serves jobs in order of ascending boosted arrival time:

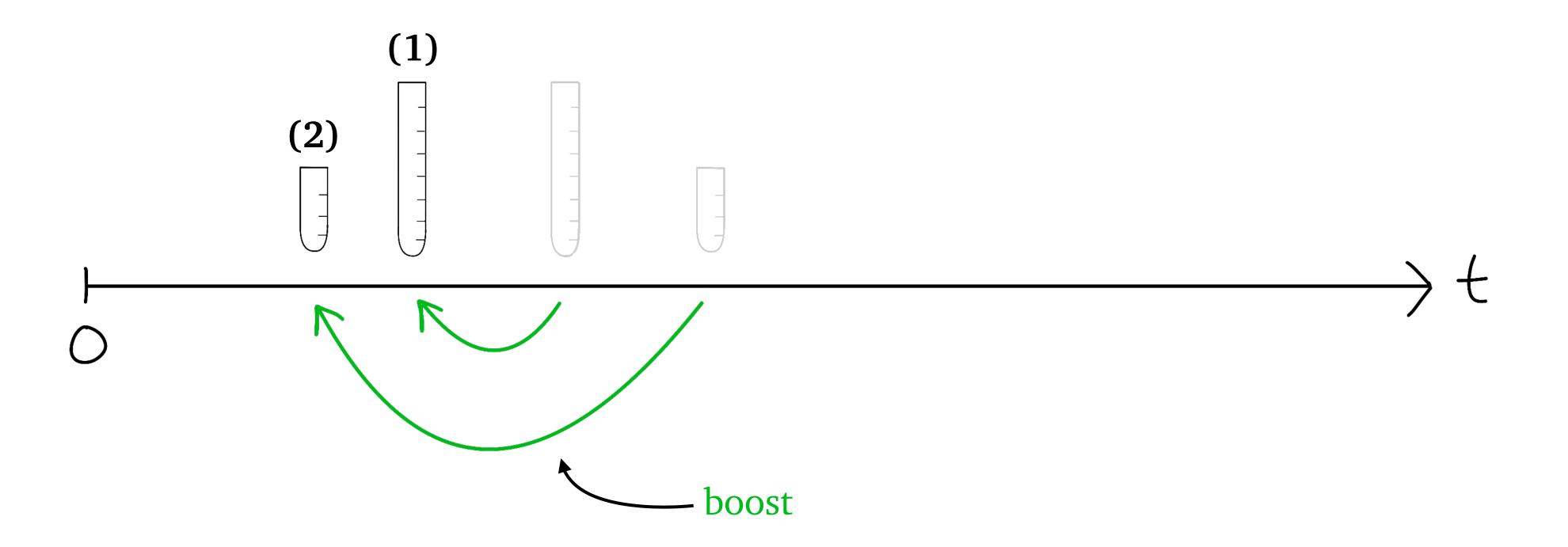
boosted arrival time = arrival time - boost

boost is determined by *boost function* $b(s) \ge 0$ that maps job size to boost.





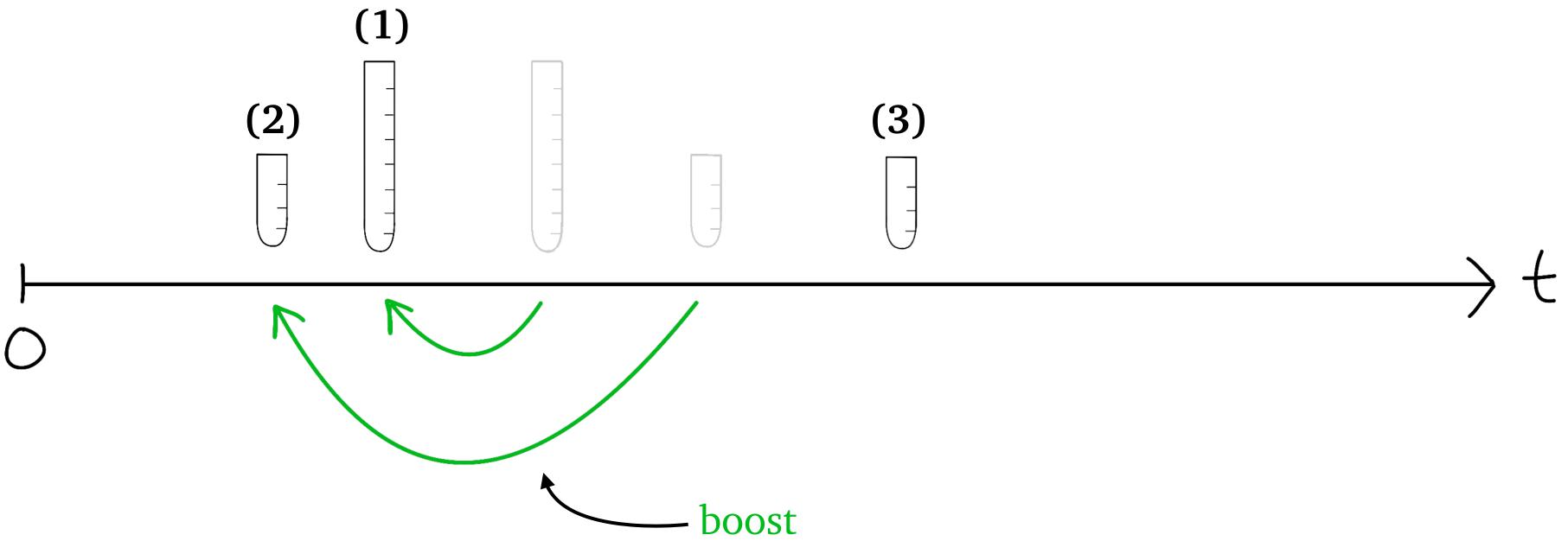
- boosted arrival time = arrival time boost
- boost is determined by *boost function* $b(s) \ge 0$ that maps job size to boost.



Boost serves jobs in order of ascending boosted arrival time:

boosted arrival time = arrival time - boost

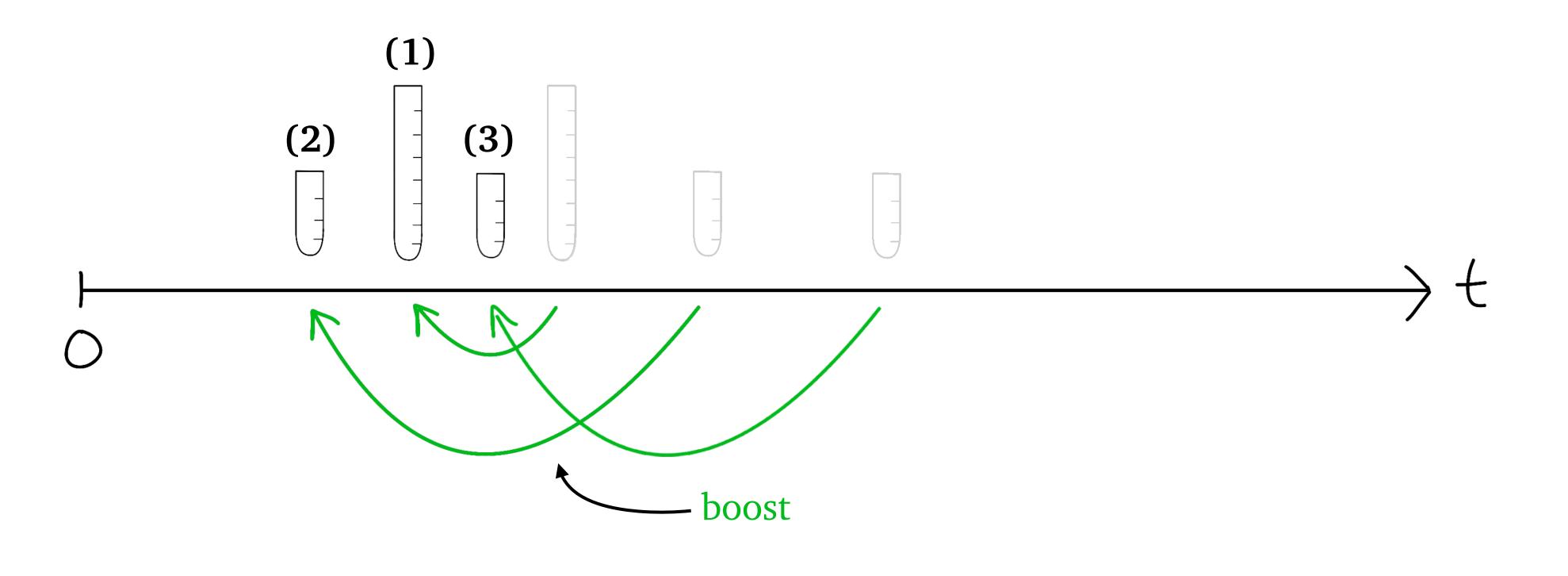
boost is determined by *boost function* $b(s) \ge 0$ that maps job size to boost.



Boost serves jobs in order of ascending boosted arrival time:

boosted arrival time = arrival time - boost

boost is determined by *boost function* $b(s) \ge 0$ that maps job size to boost.



- boosted arrival time = arrival time boost
- boost is determined by *boost function* $b(s) \ge 0$ that maps job size to boost.

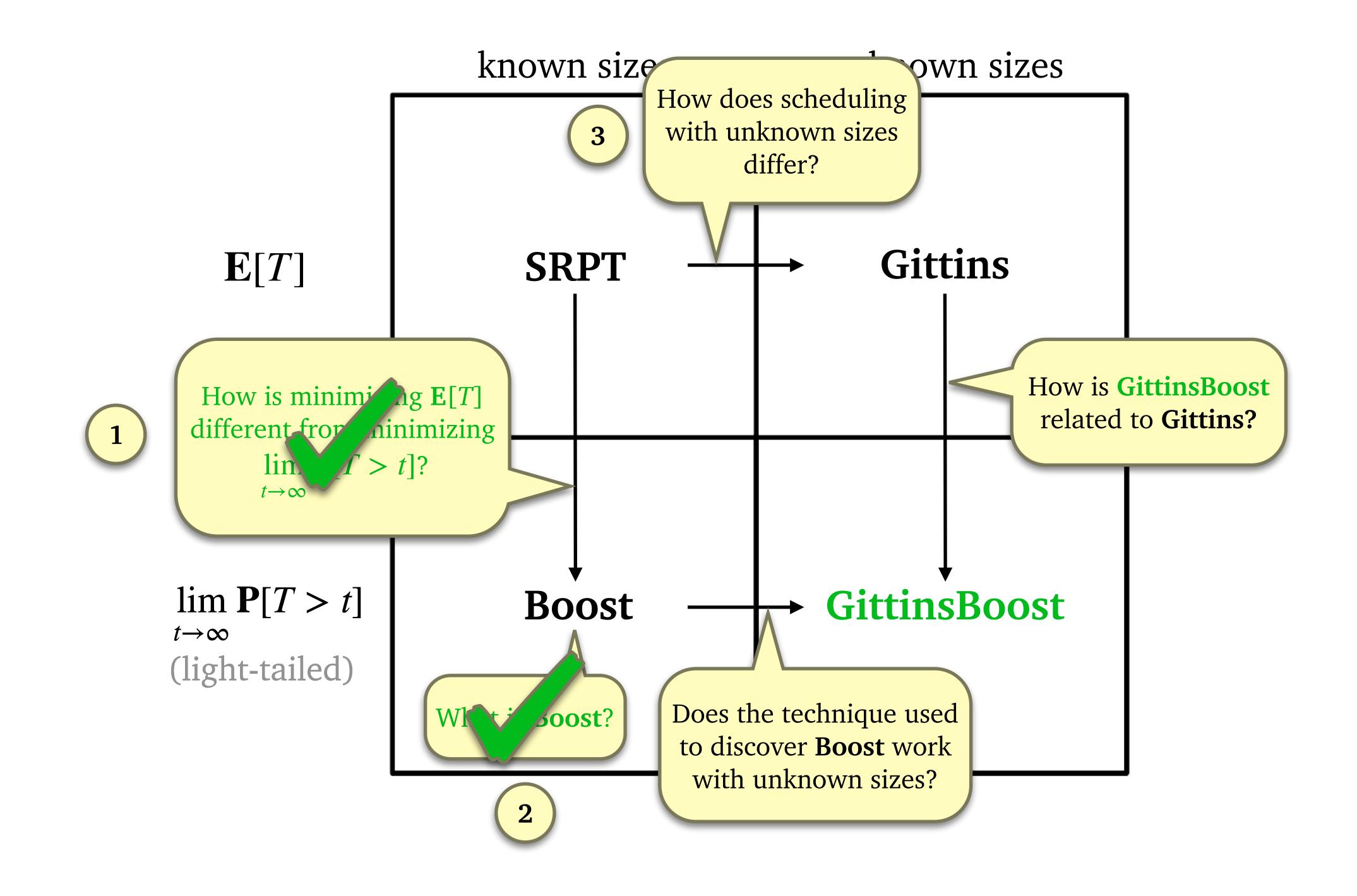
- boosted arrival time = arrival time boost
- boost is determined by *boost function* $b(s) \ge 0$ that maps job size to boost.
 - Which boost function minimizes asymptotic tail latency?

b(s) = -

results in strongly optimal policy (Yu & Scully, 2024)

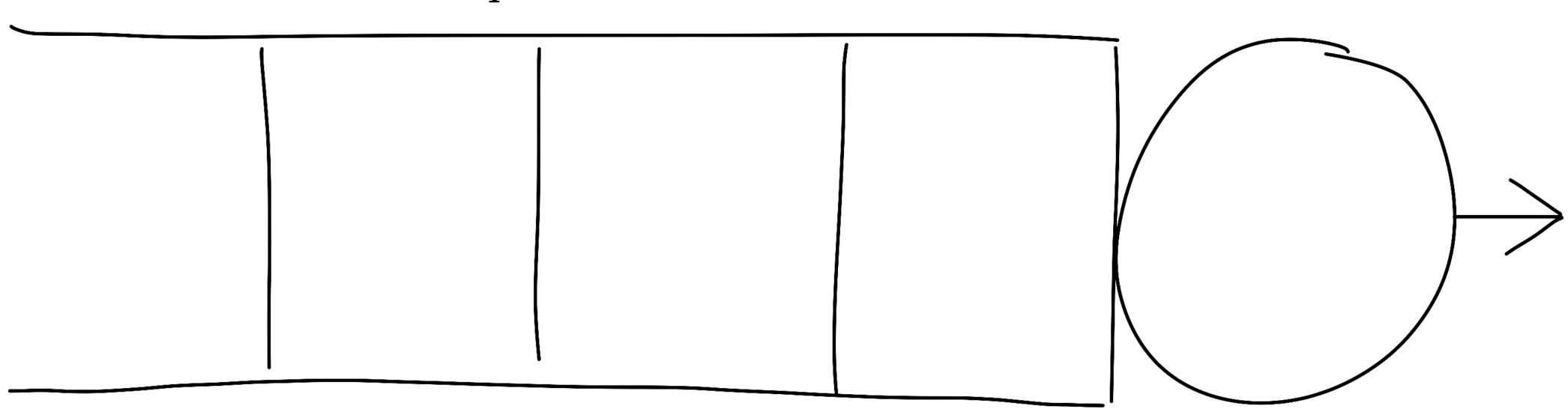
- boosted arrival time = arrival time boost
- boost is determined by *boost function* $b(s) \ge 0$ that maps job size to boost.
 - Which boost function minimizes asymptotic tail latency?
 - choosing:

$$\frac{1}{\gamma} \log \frac{1}{1 - e^{-\gamma s}}$$

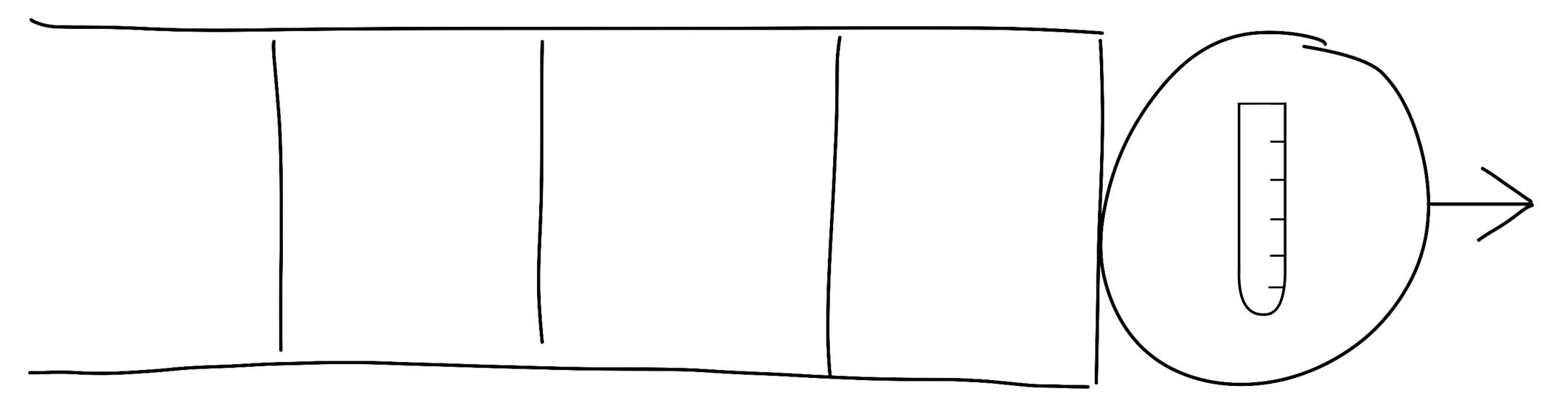


server

queue

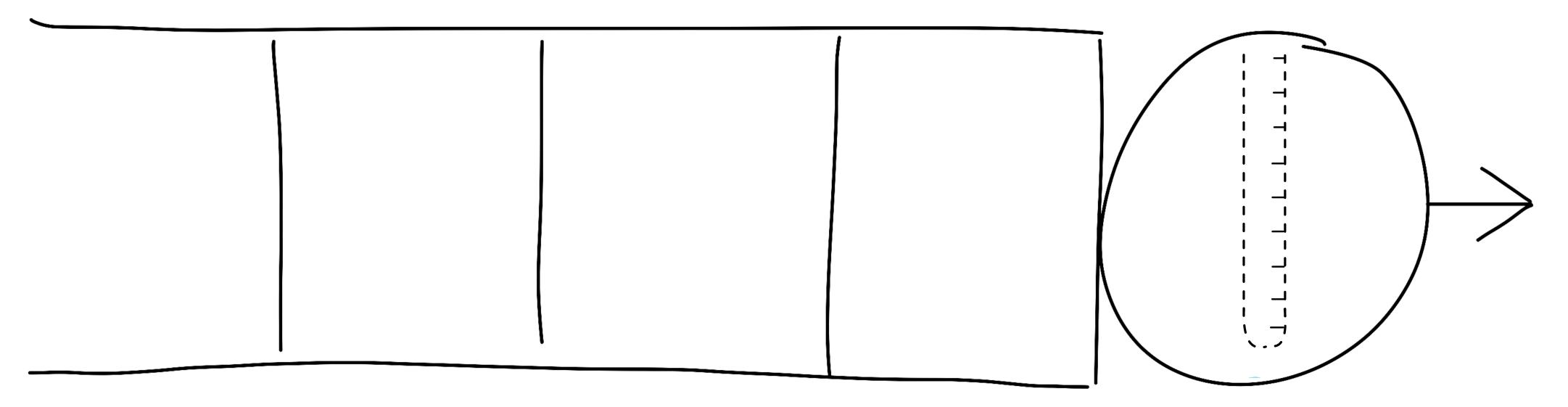


queue



server

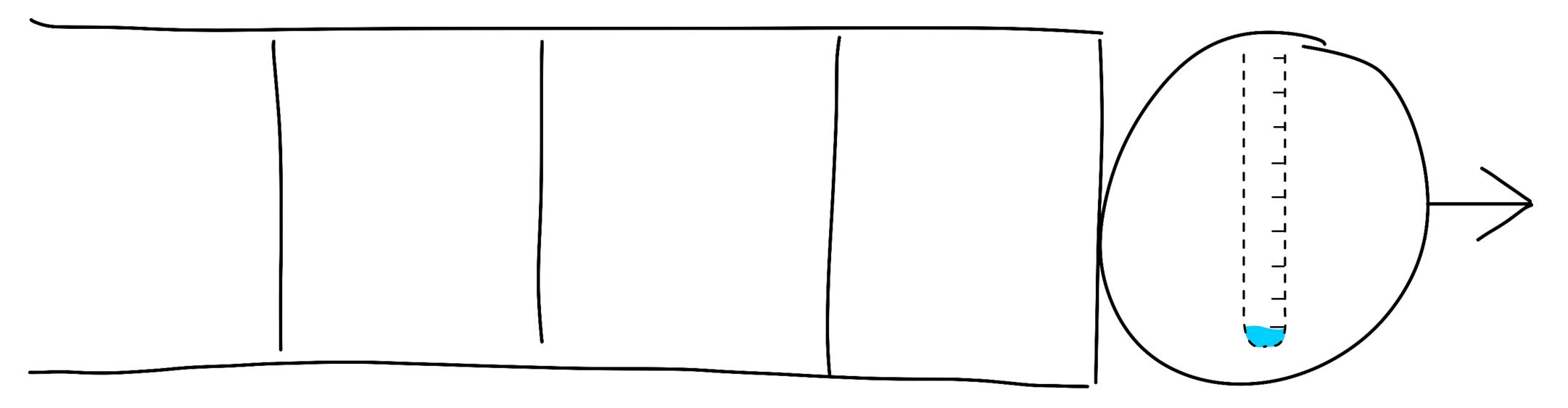
queue



server

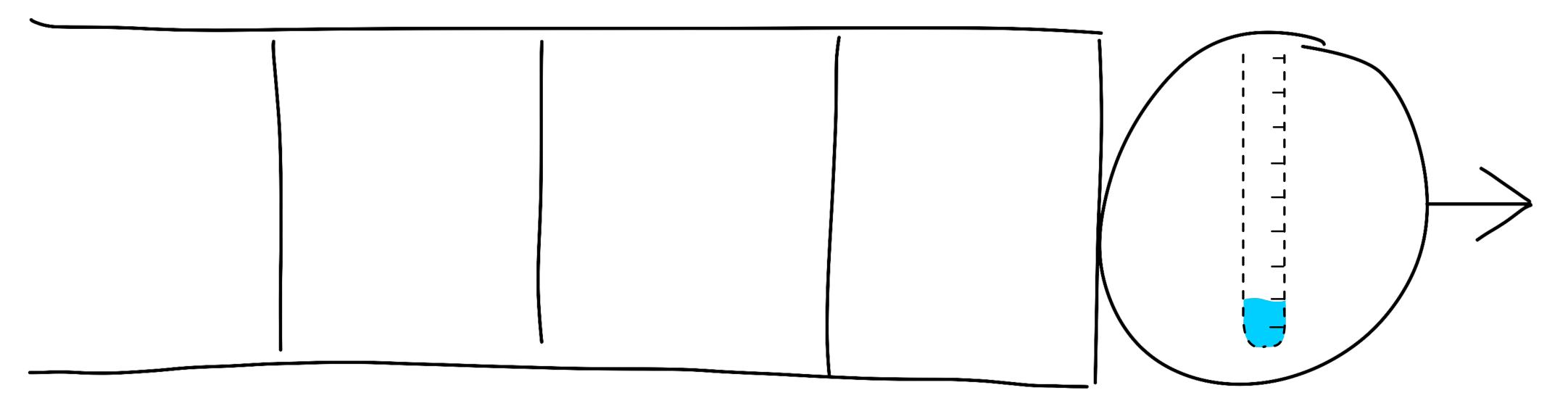
71

queue



server

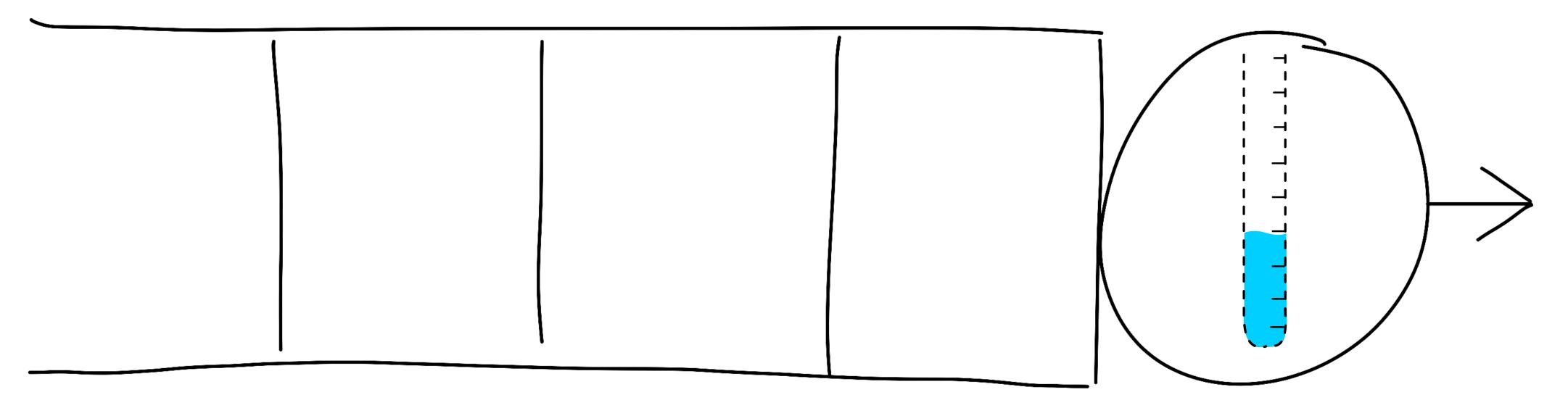
queue



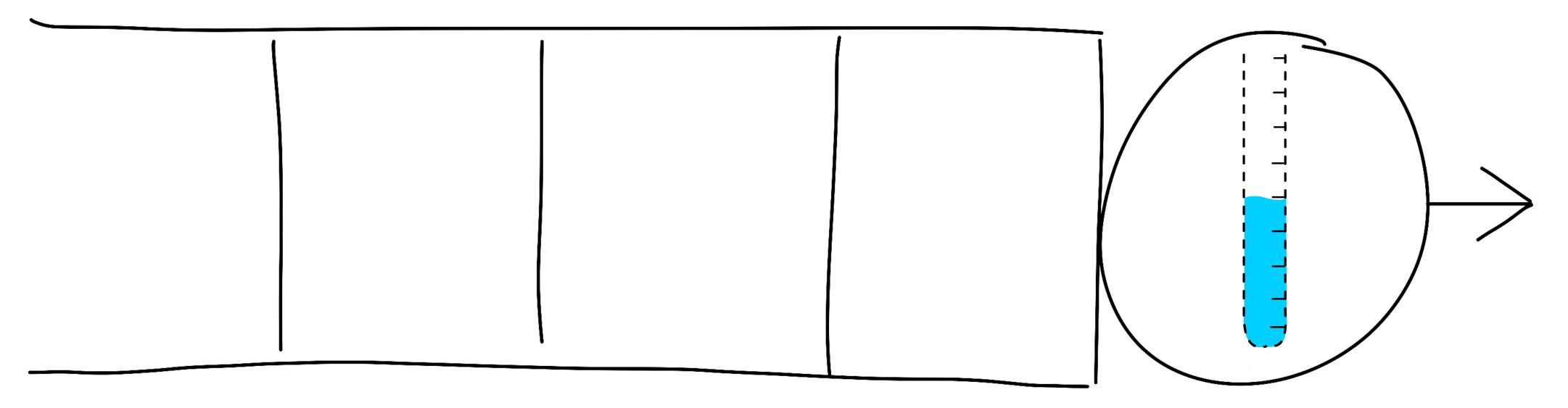
queue



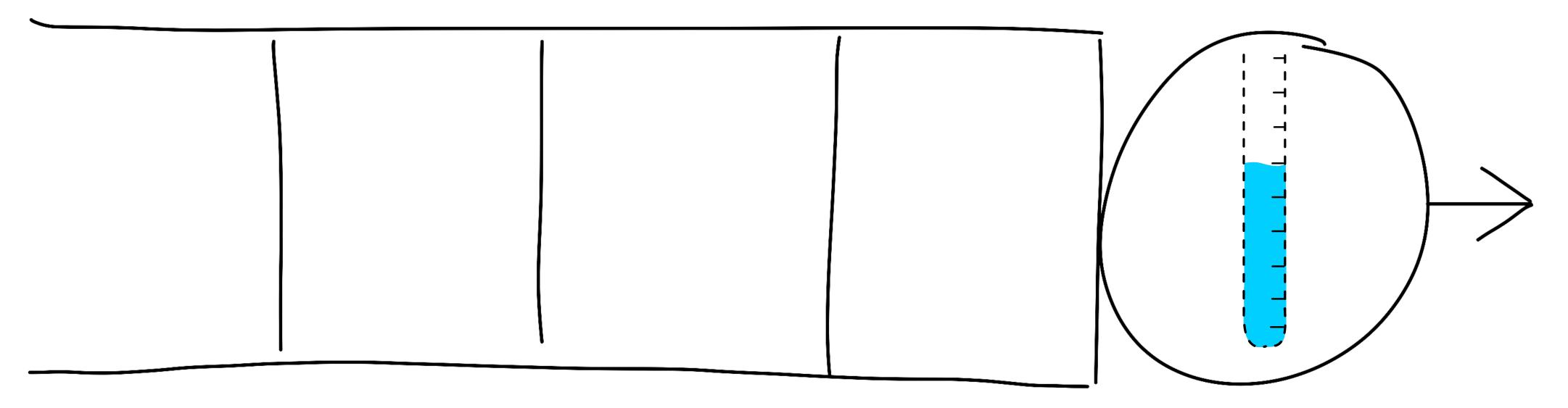
queue



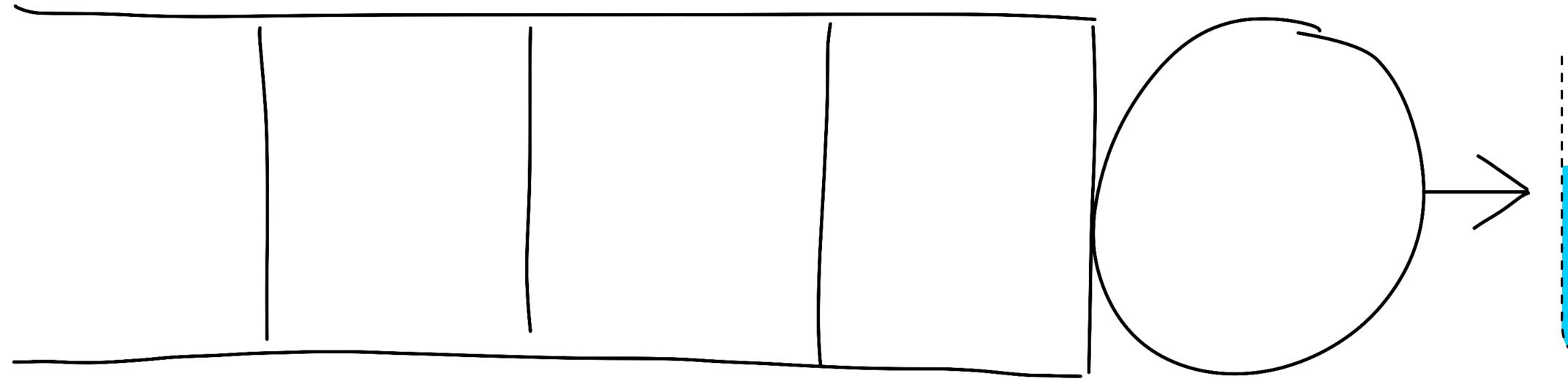
queue



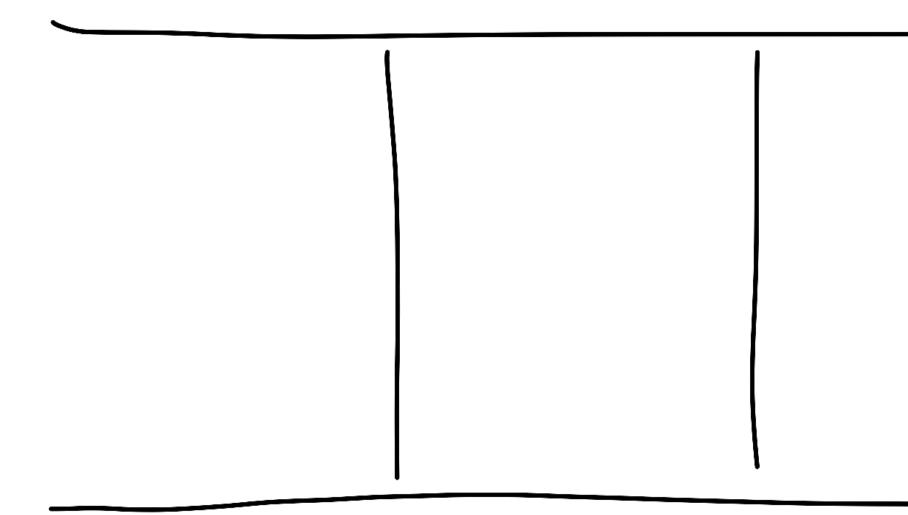
queue

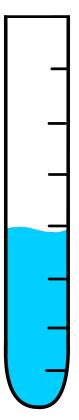


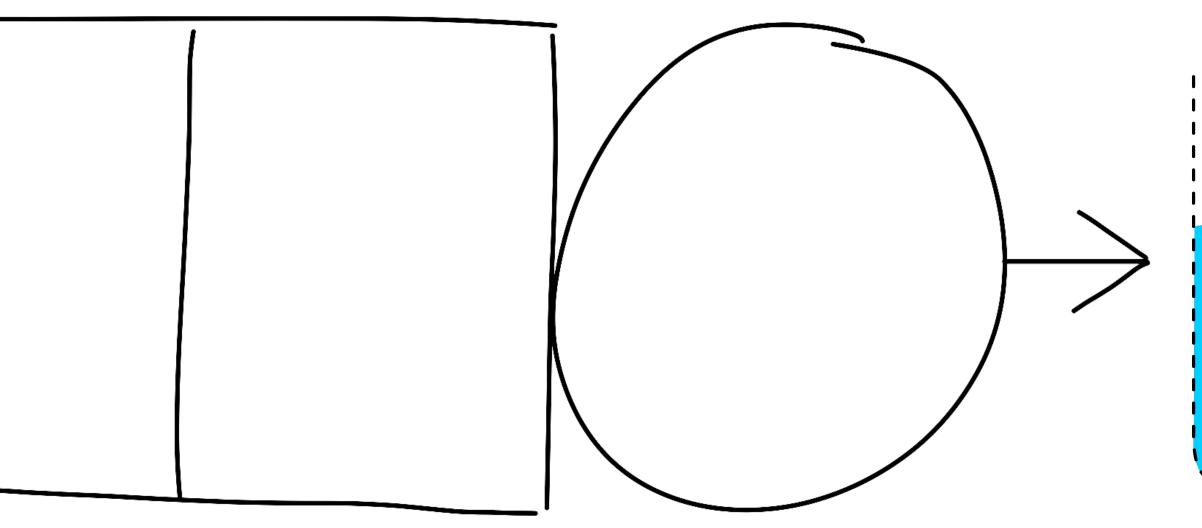
queue



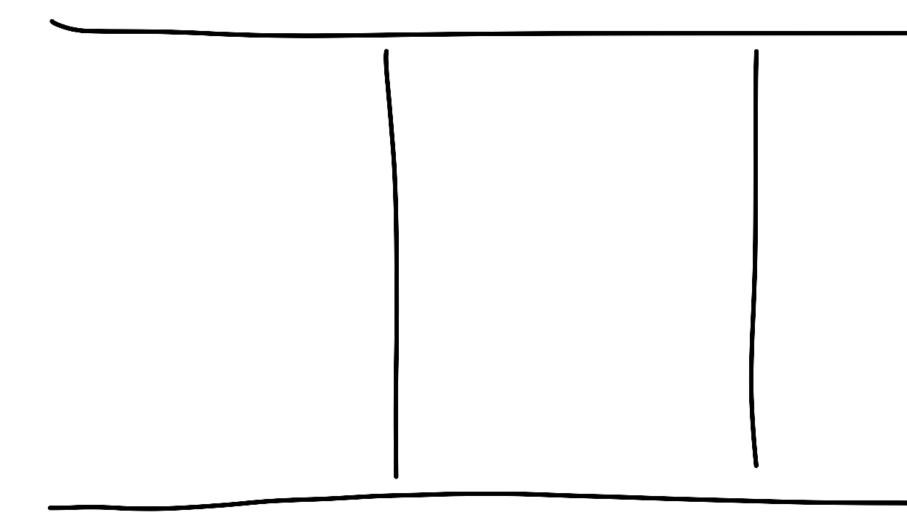
queue



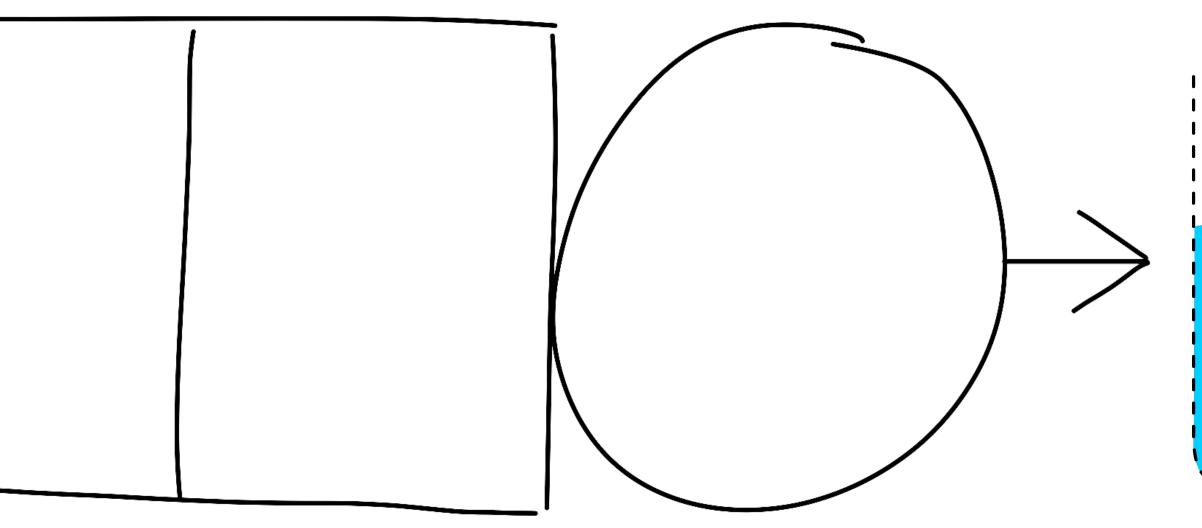




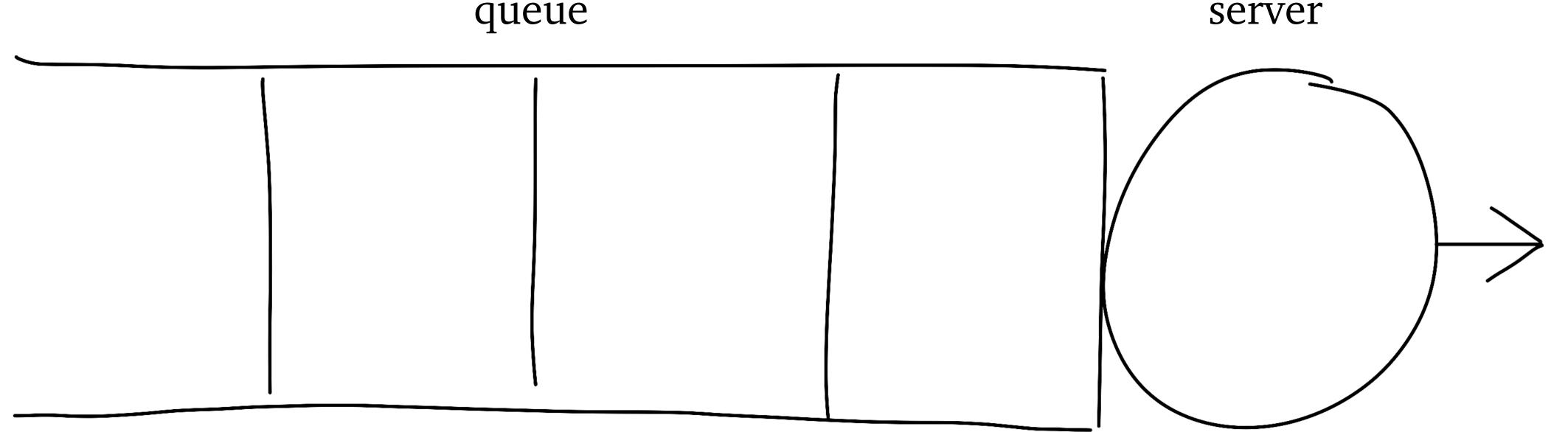
queue



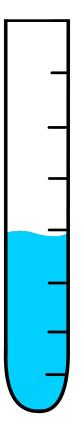
SRPT: order by [size - age]



queue



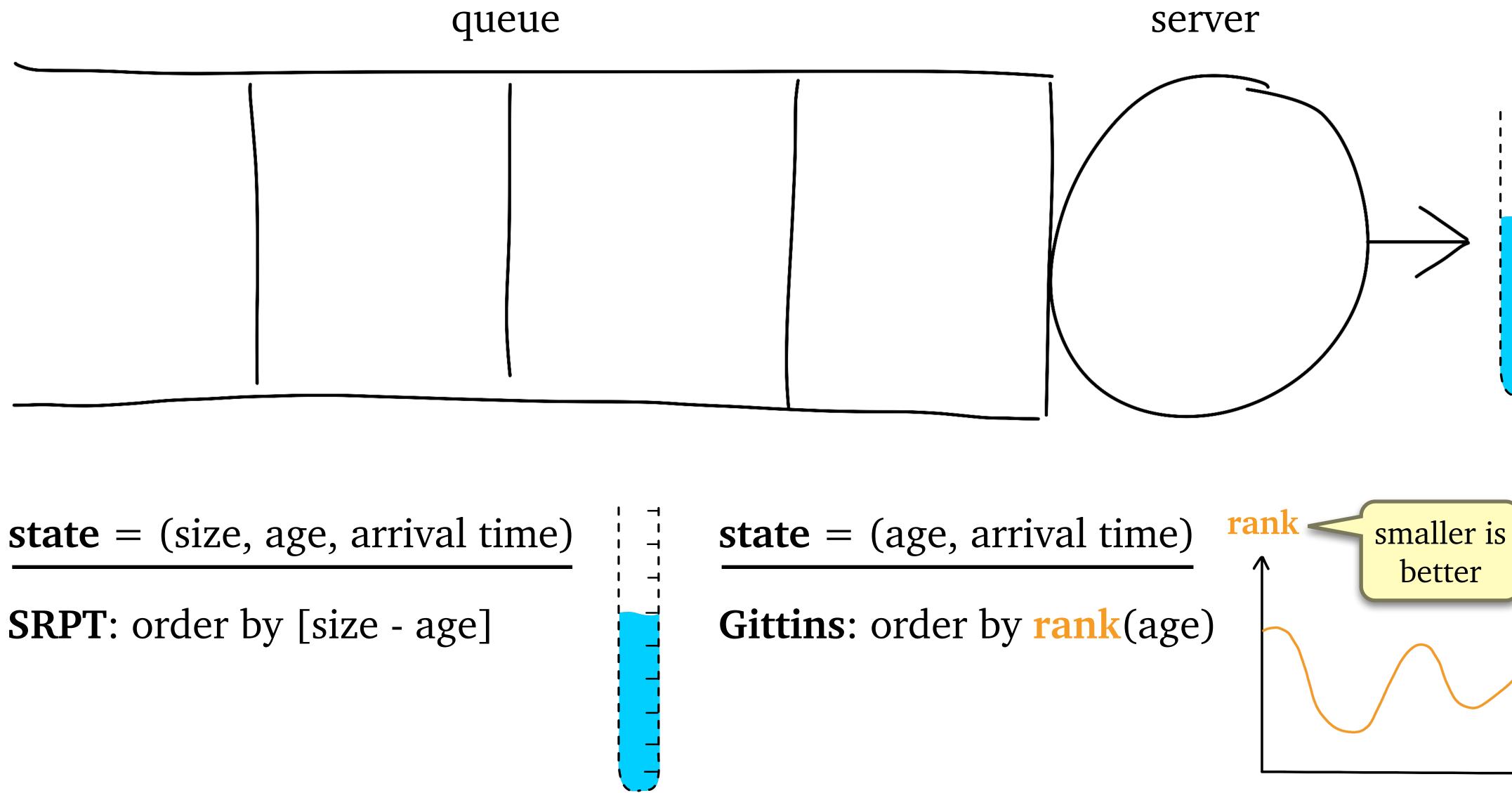
| | | |

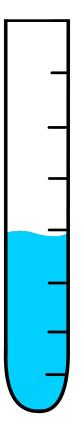


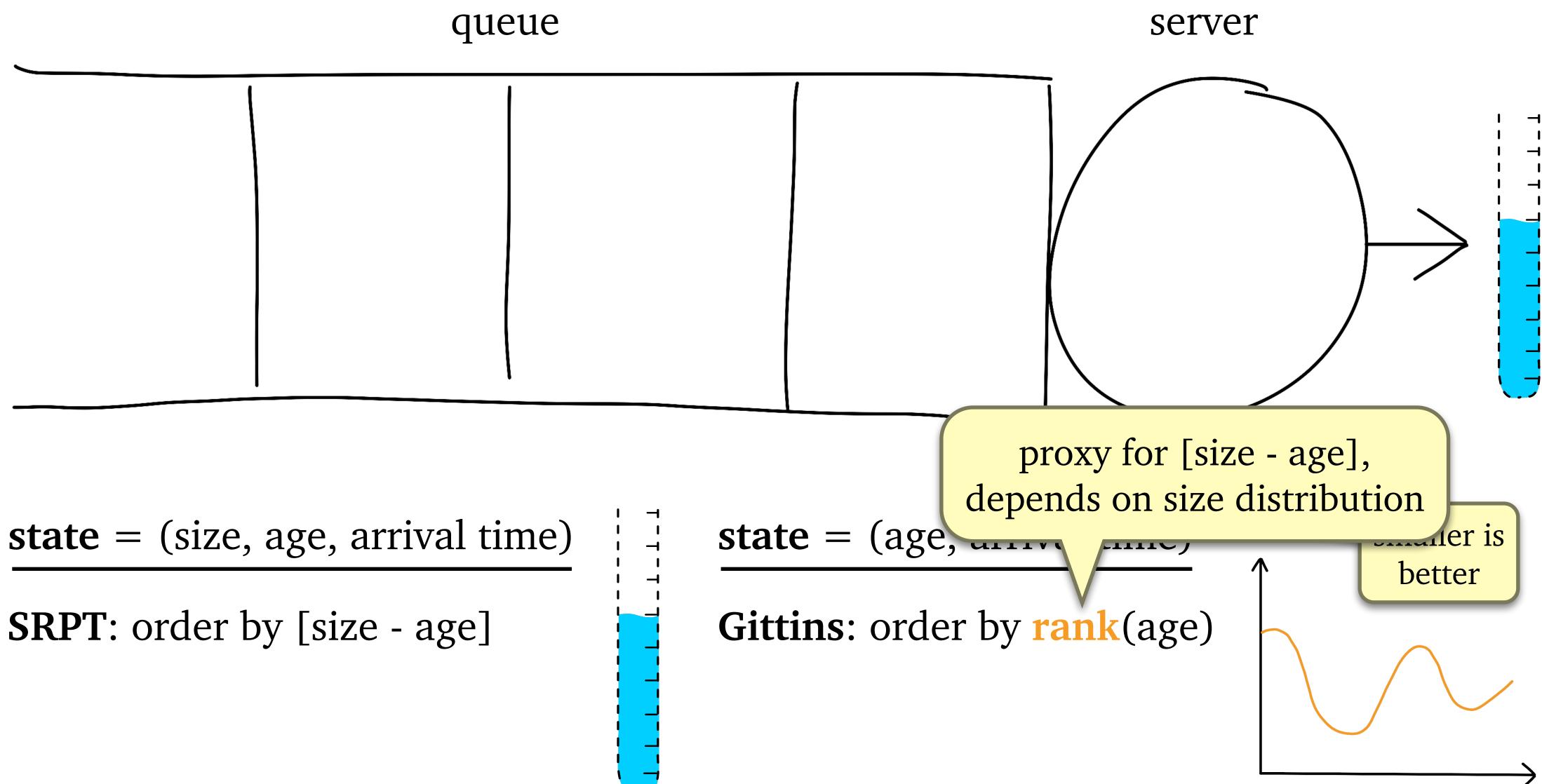
state = (size, age, arrival time)

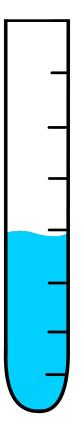
SRPT: order by [size - age]

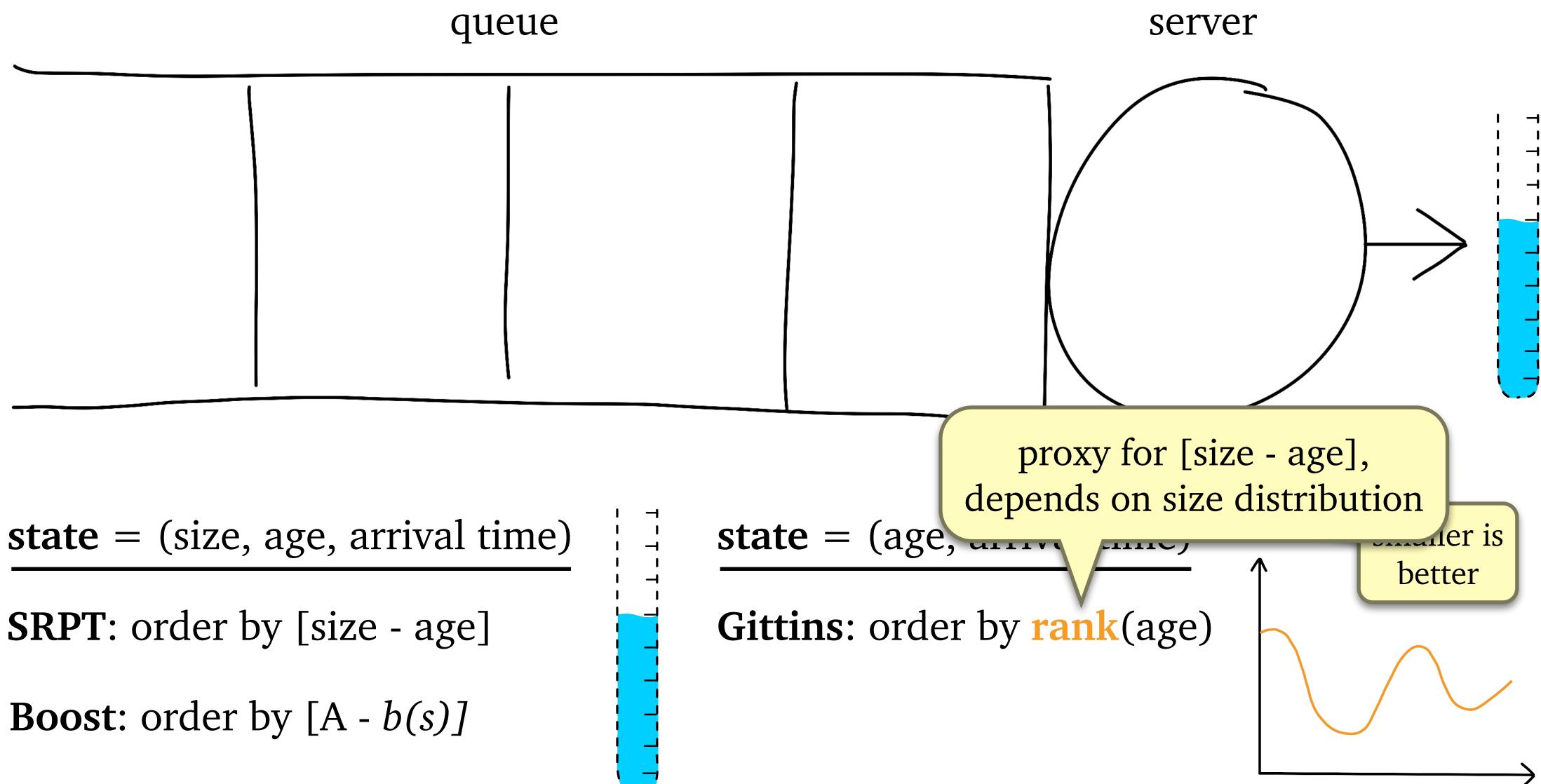
state = (age, arrival time)

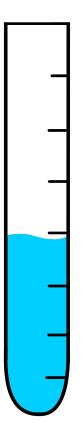


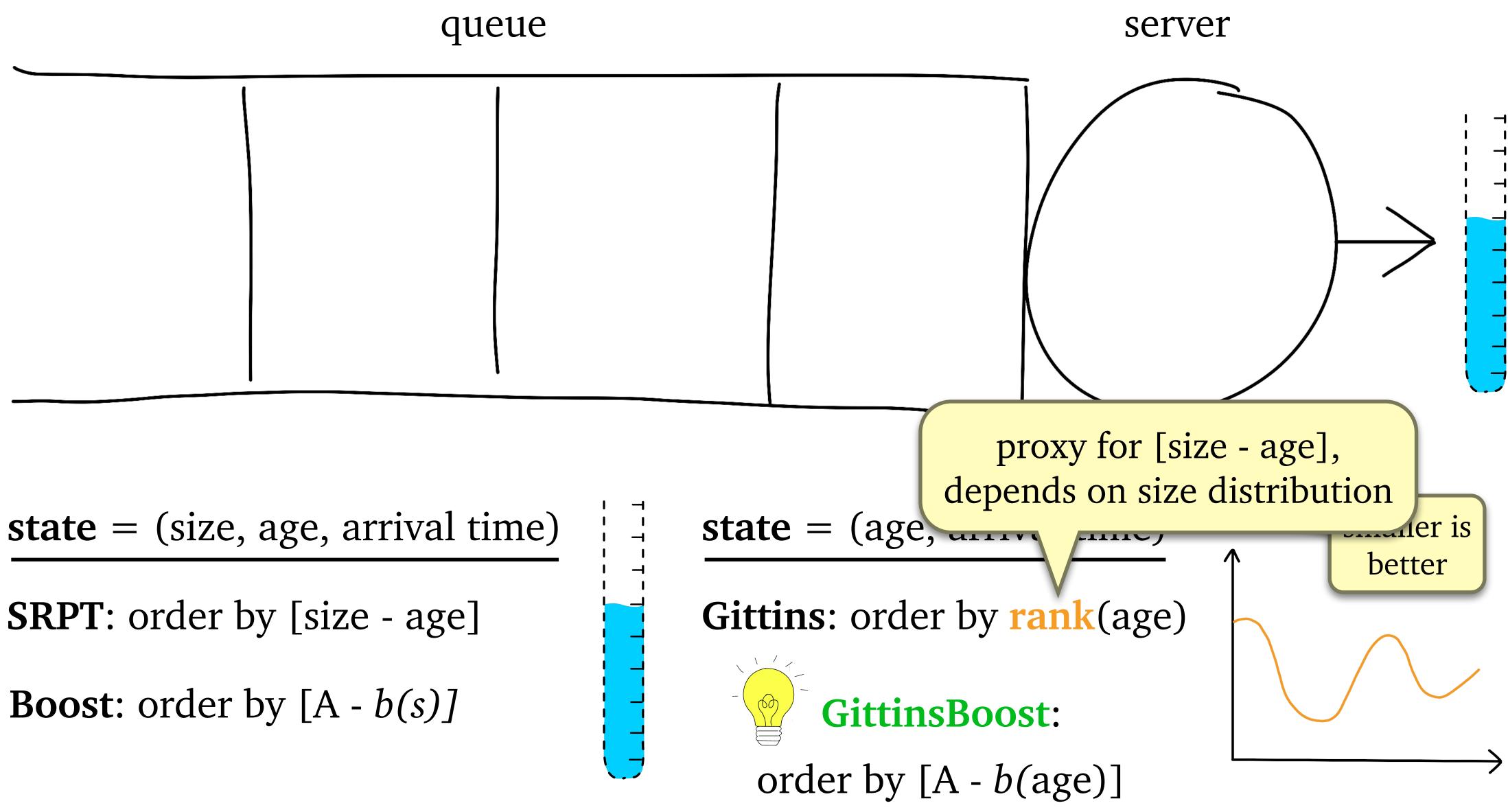


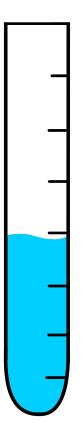


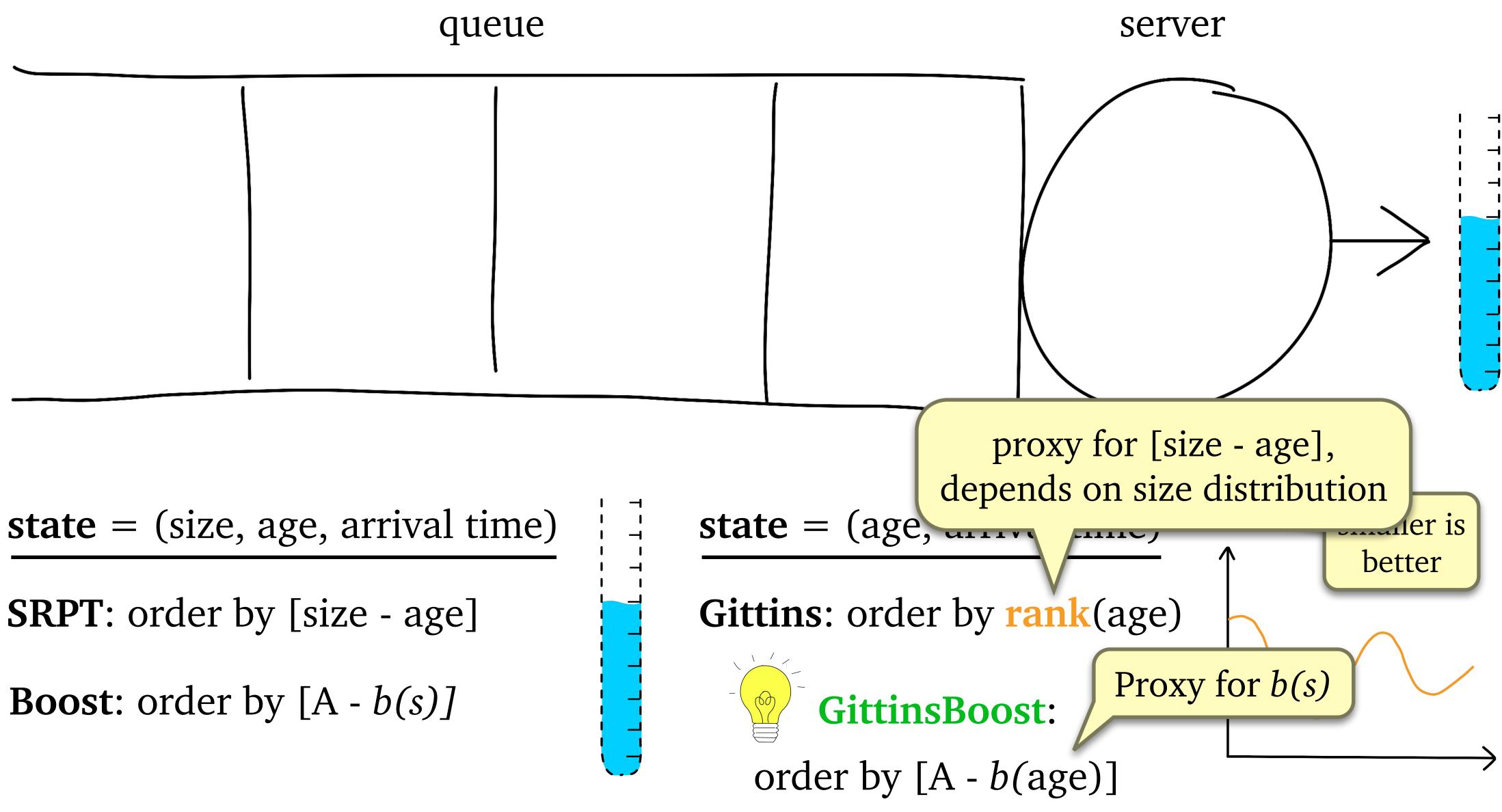


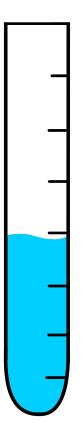




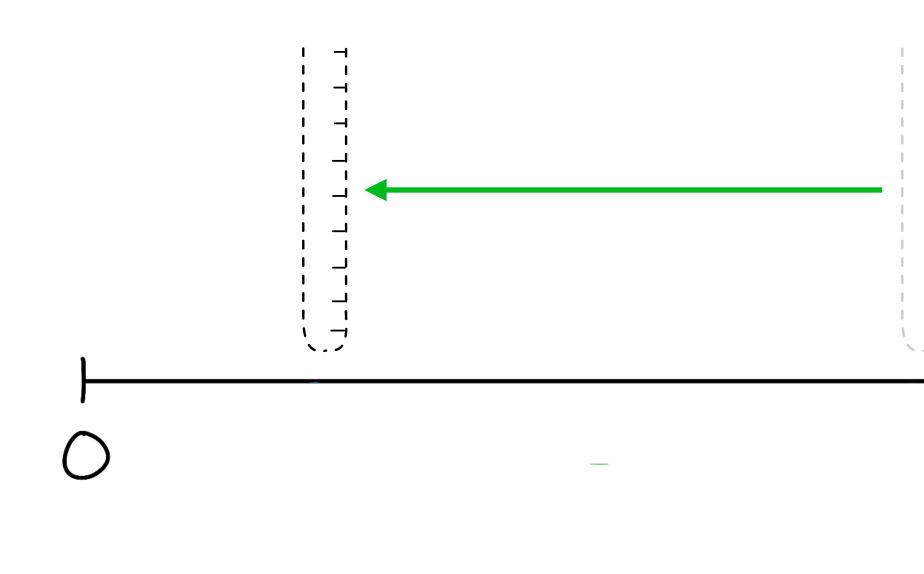




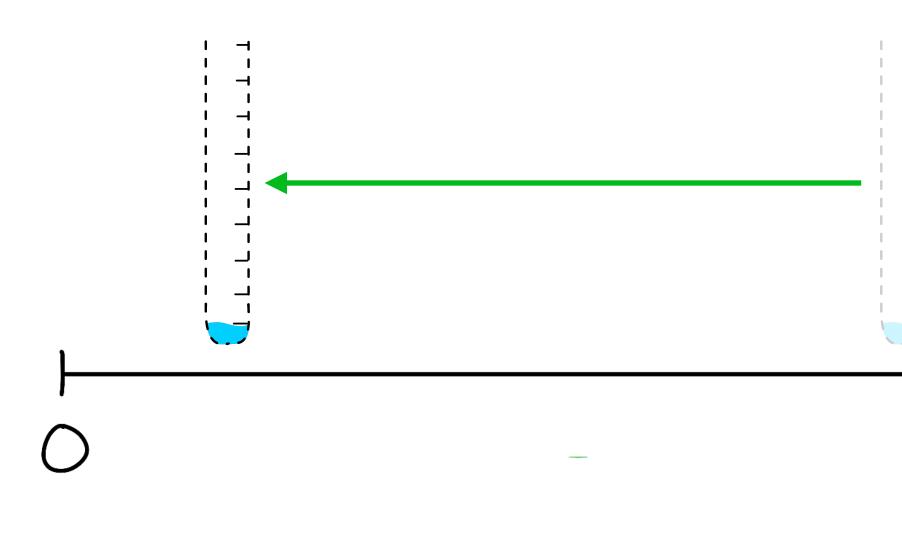


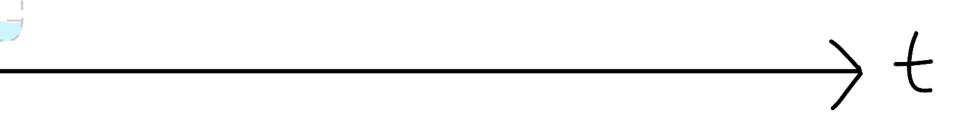


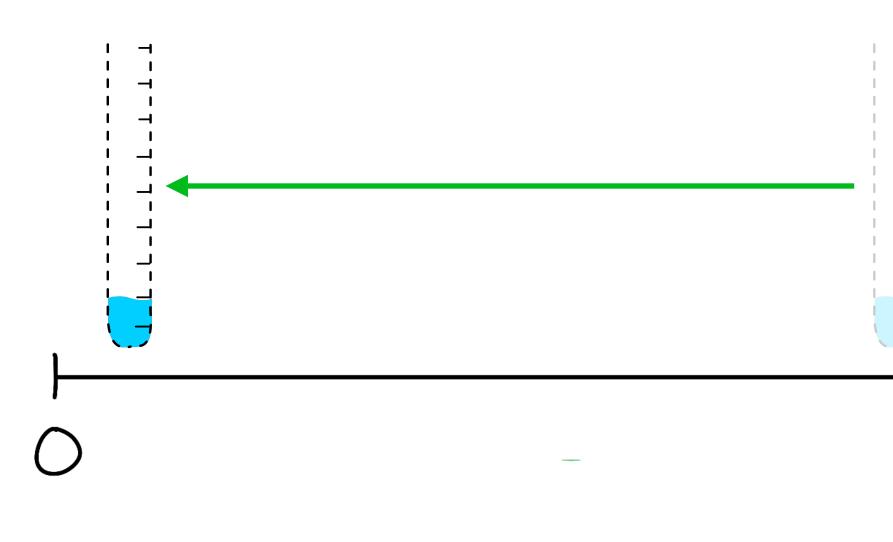
defined by a *boost function* $b(x) \ge 0$ that maps **age** to boost

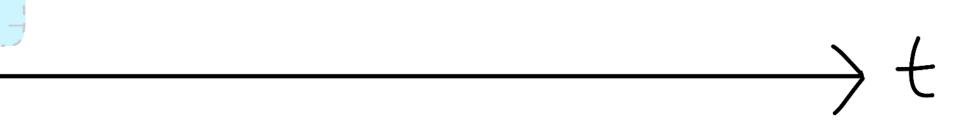


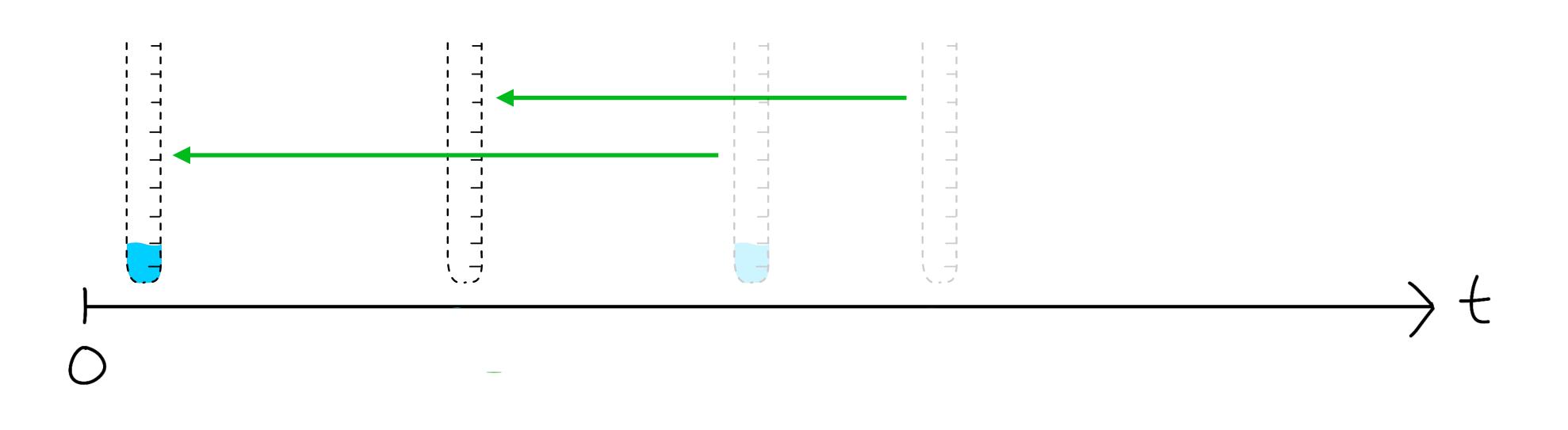
 $\rightarrow t$

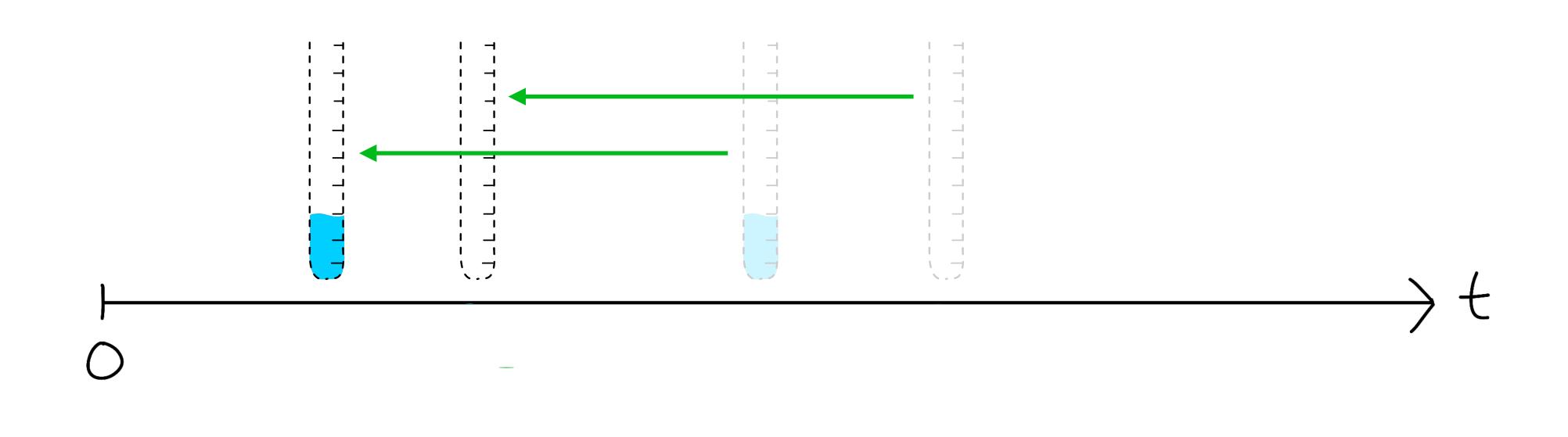


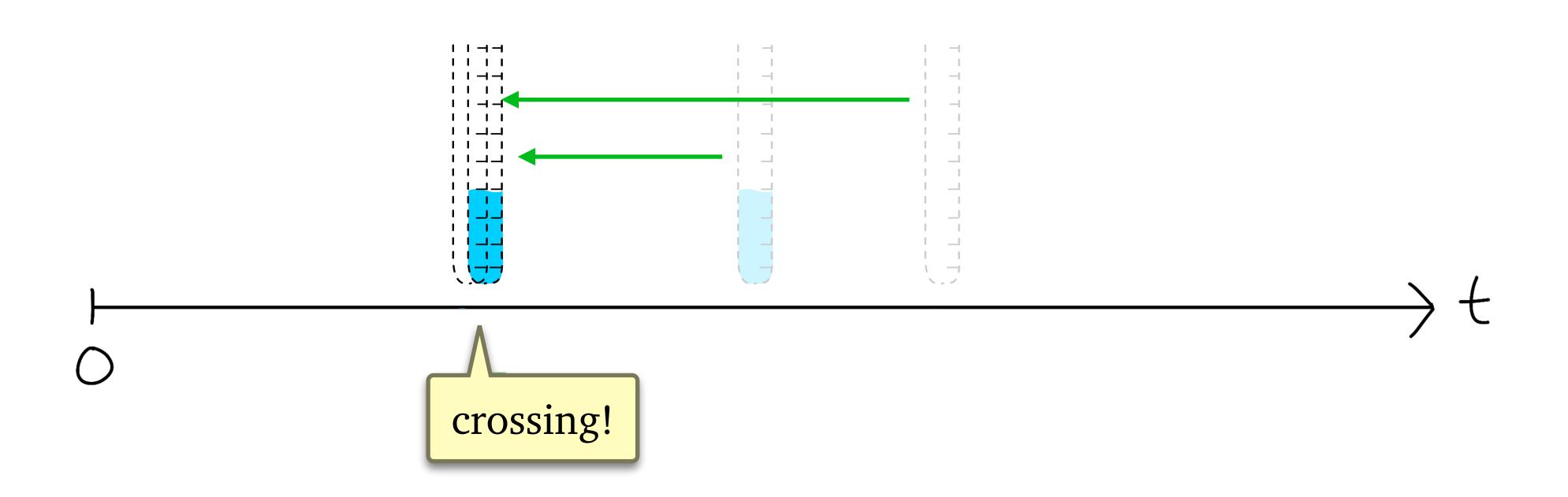


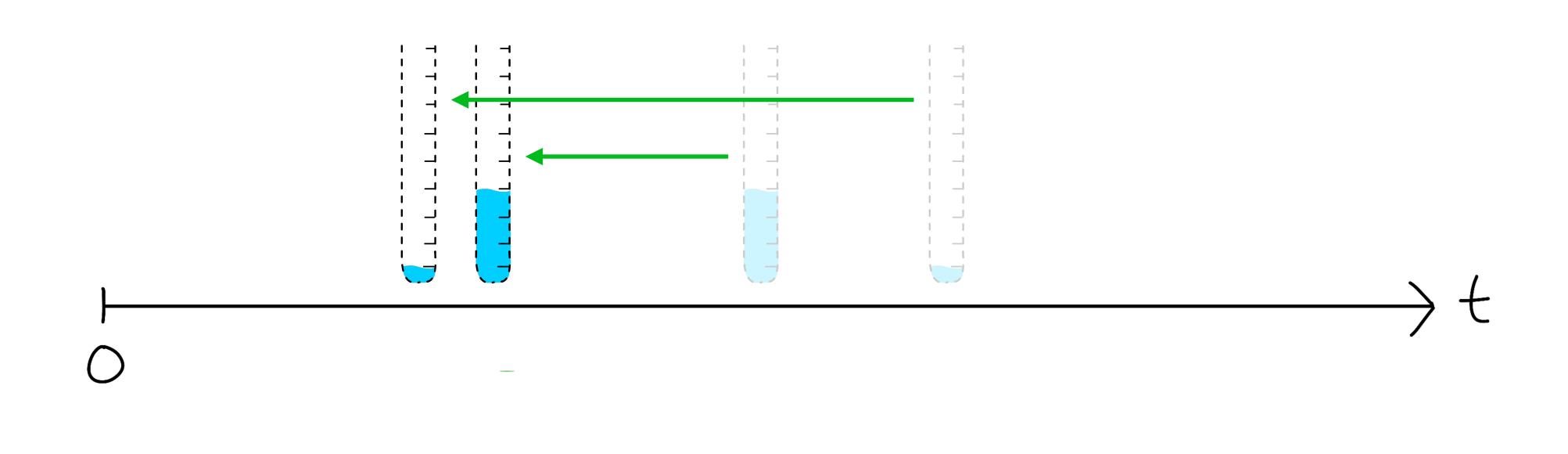


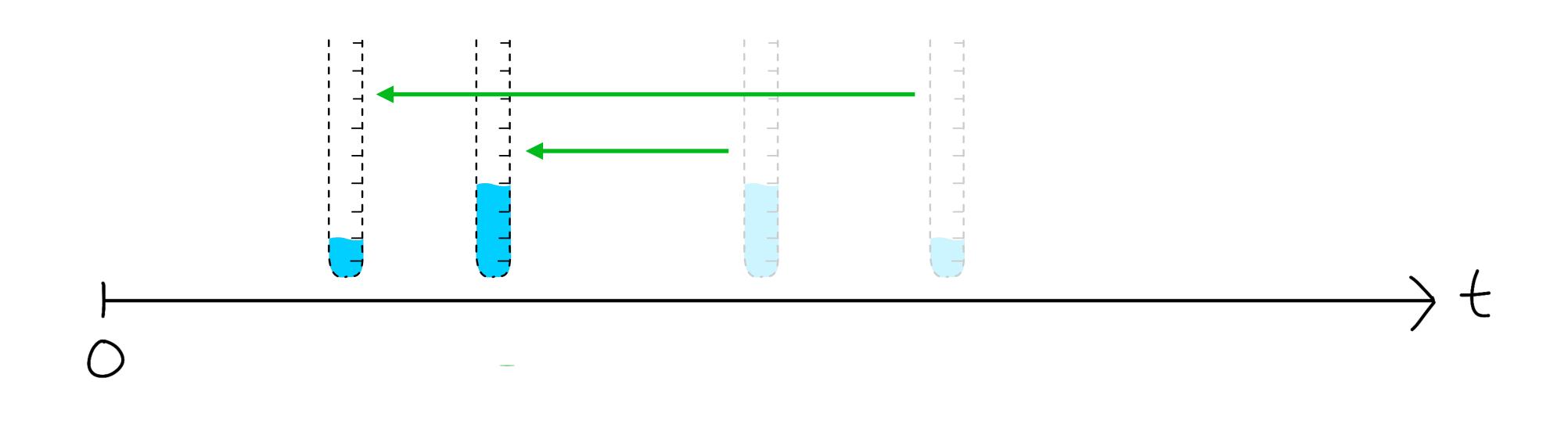


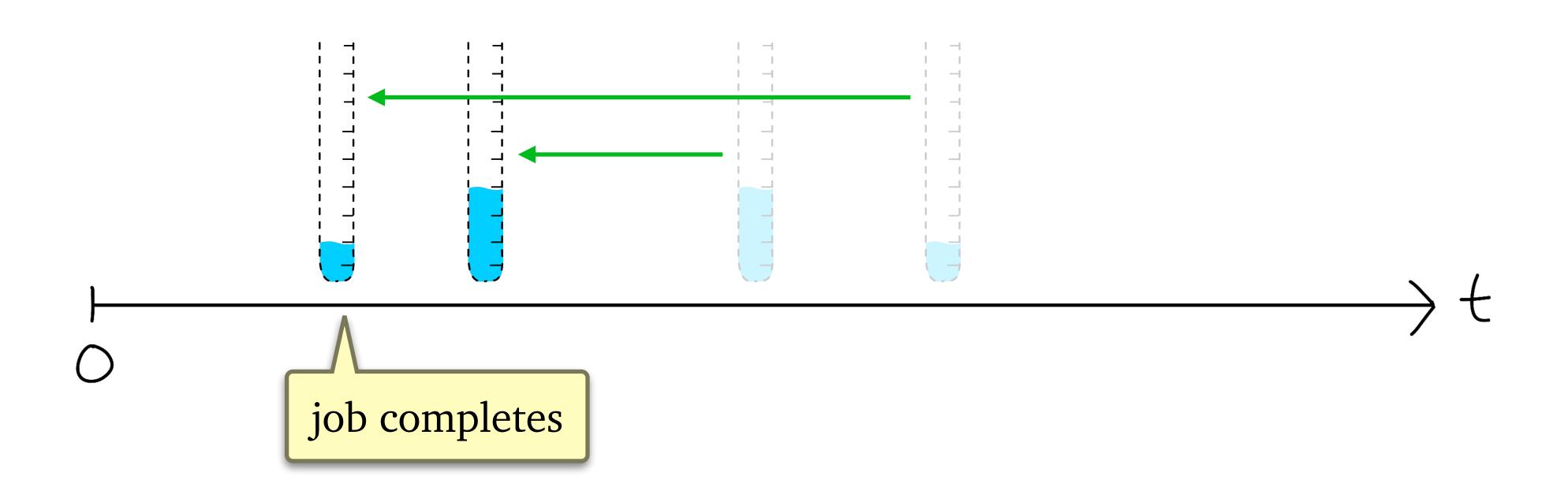


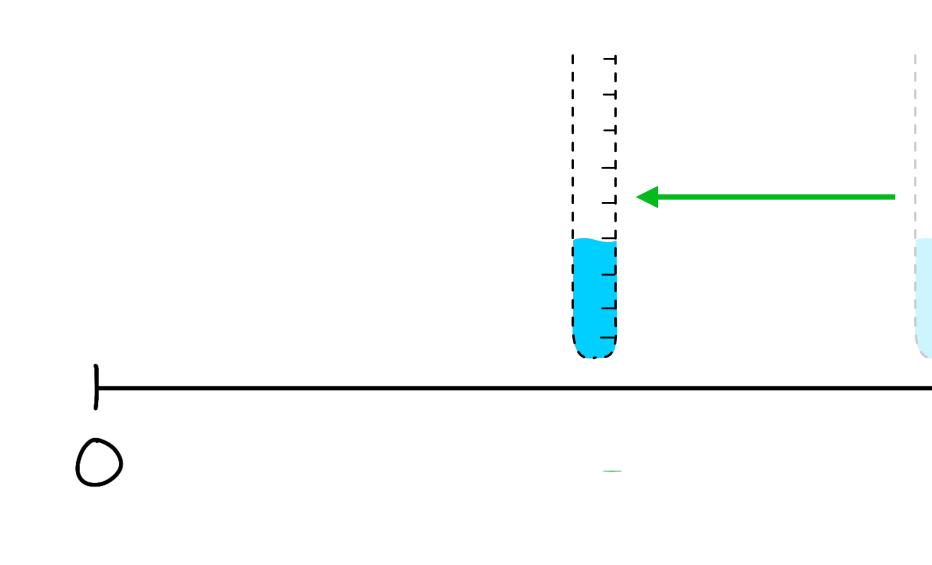












defined by a *boost function* $b(x) \ge 0$ that maps **age** to boost

Which boost function is optimal?

Which boost function is optimal?

choosing:

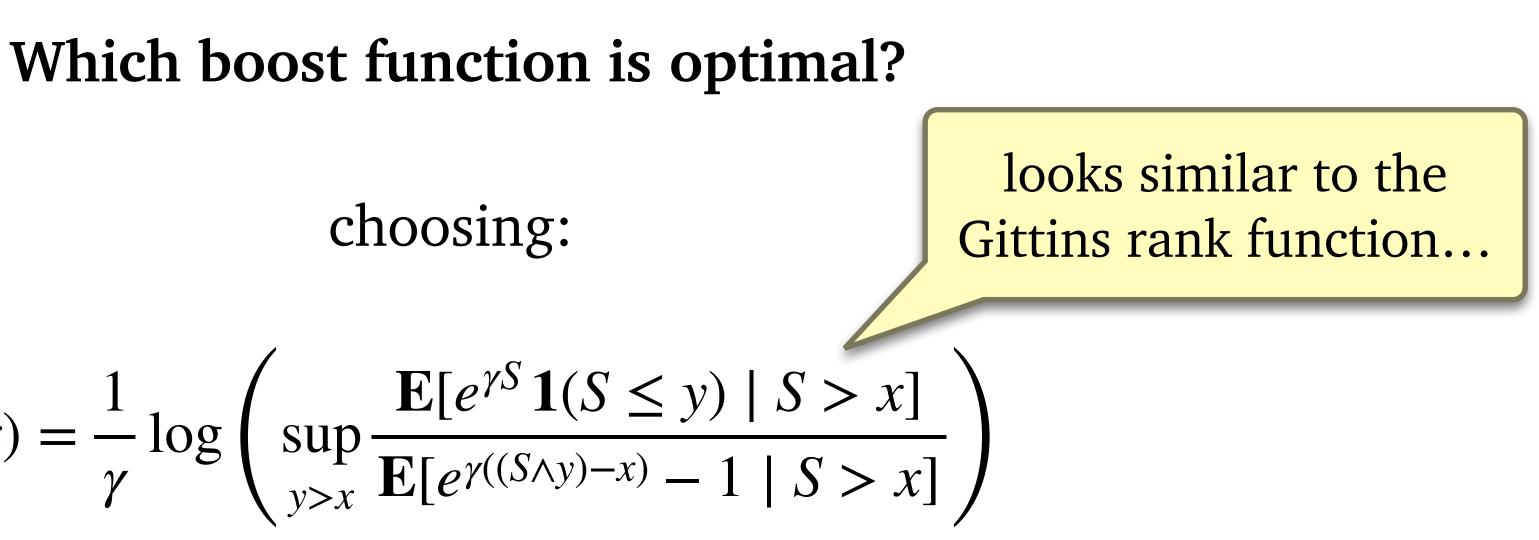
$$b(x) = \frac{1}{\gamma} \log \left(\sup_{y > x} \frac{\mathbf{E}[e^{\gamma S} \mathbf{1}(S \le y) \mid S > x]}{\mathbf{E}[e^{\gamma((S \land y) - x)} - 1 \mid S > x]} \right)$$

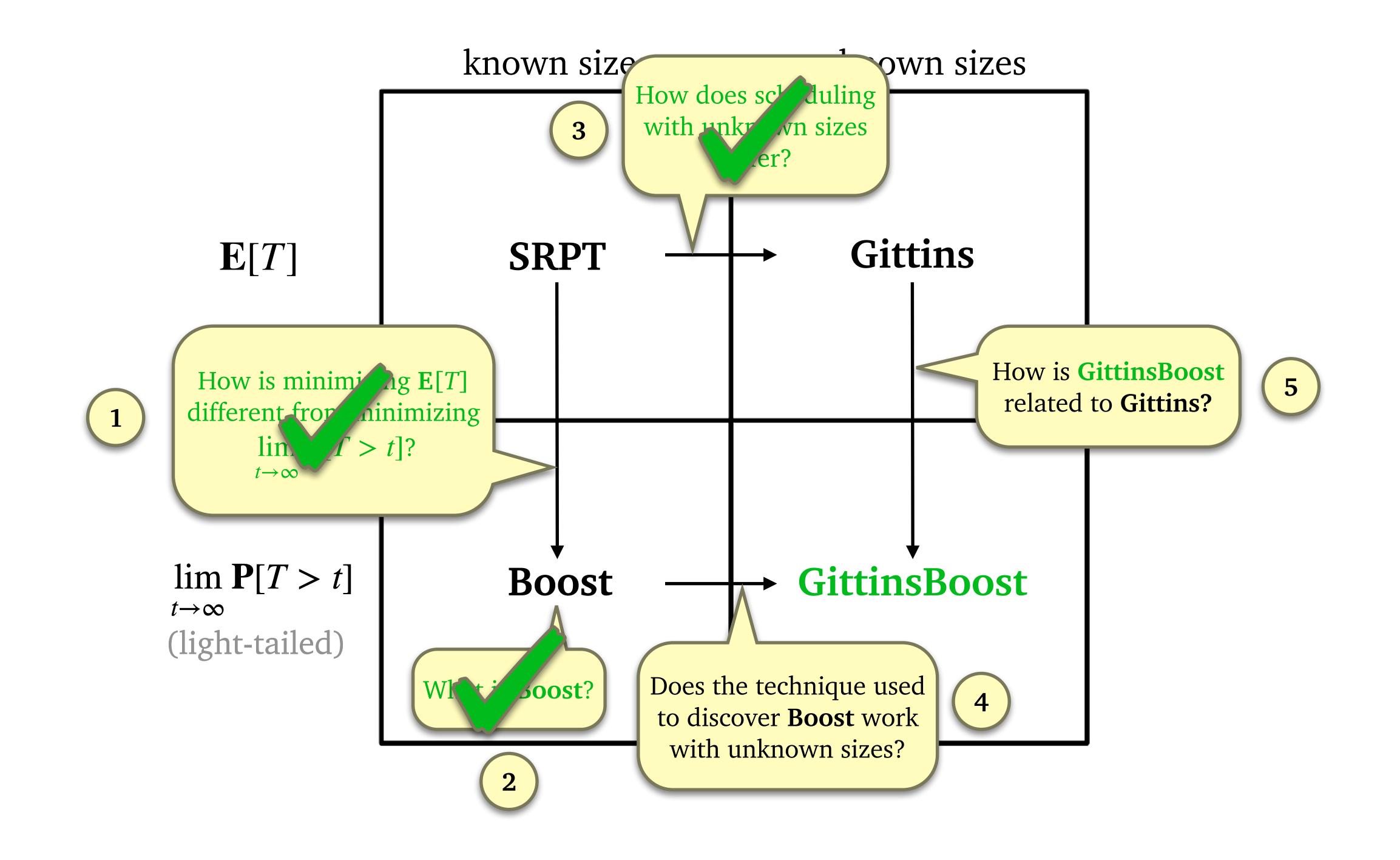
gets us a strongly optimal policy in the class of policies that don't use job size information.

$$b(x) = \frac{1}{\gamma} \log \left(\sup_{y > x} \frac{1}{y} \right)$$

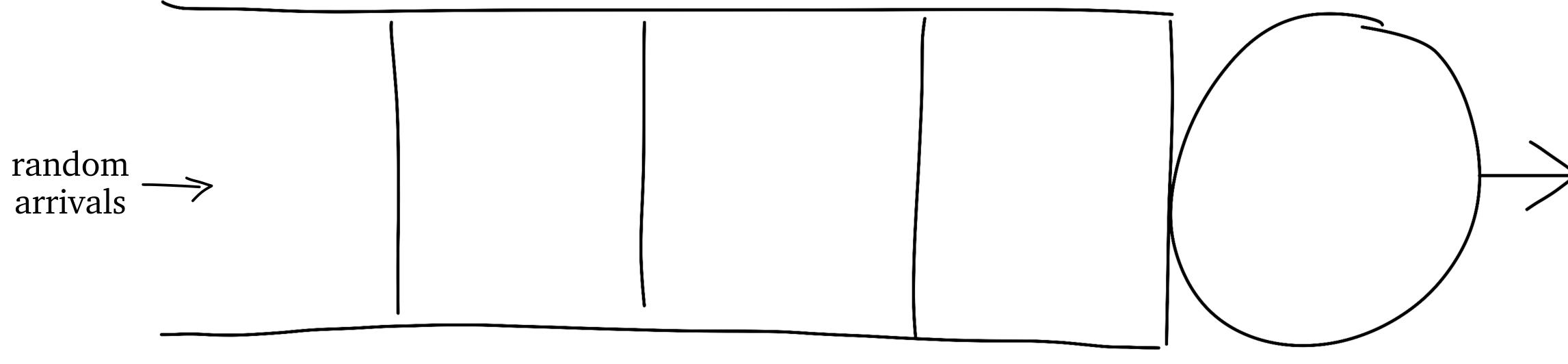
gets us a strongly optimal policy in the class of policies that don't use job size information.

defined by a *boost function* $b(x) \ge 0$ that maps age to boost

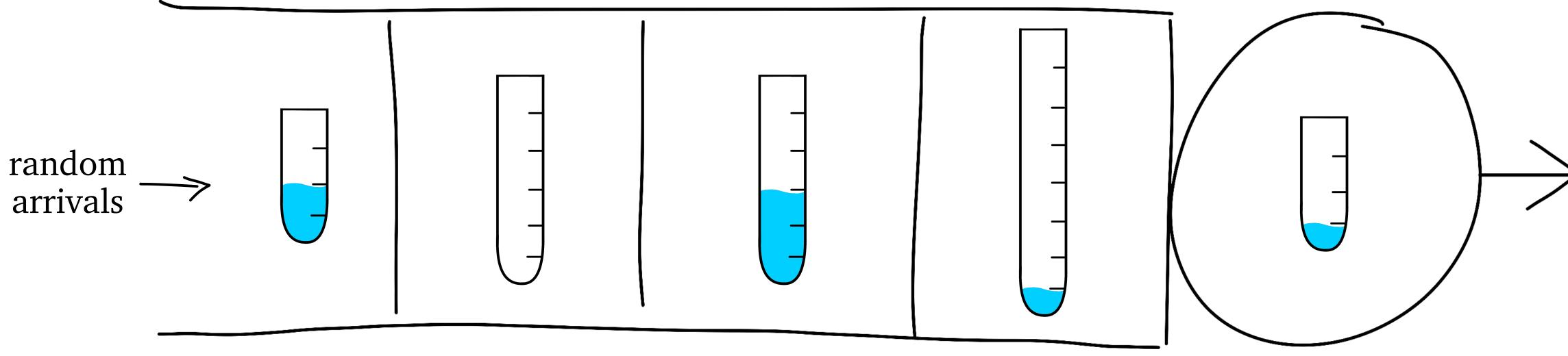


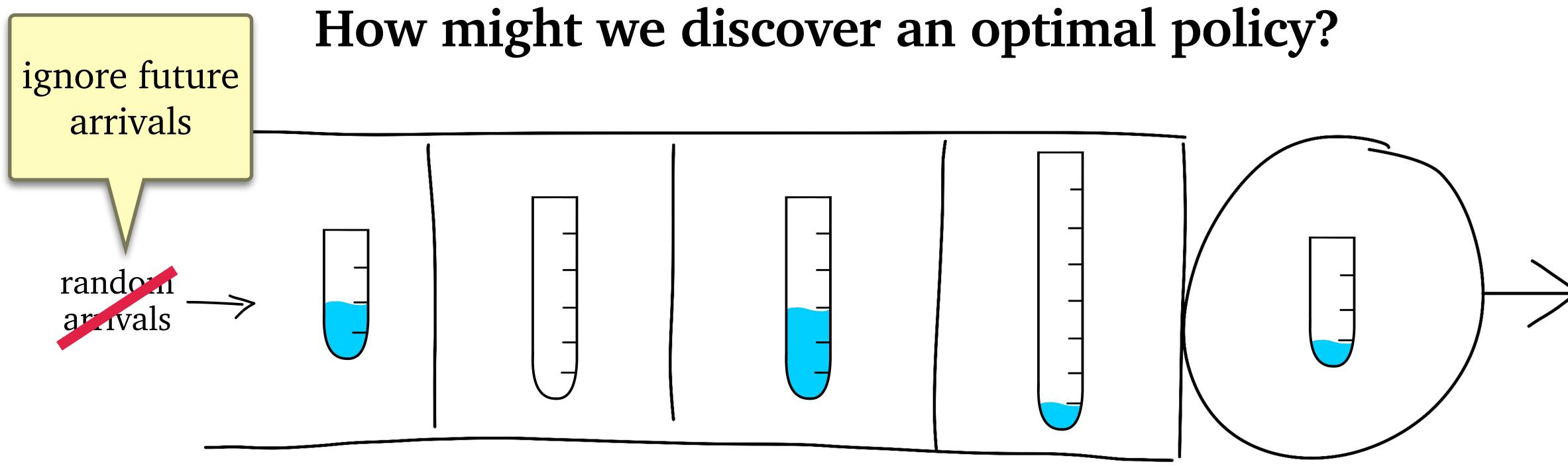


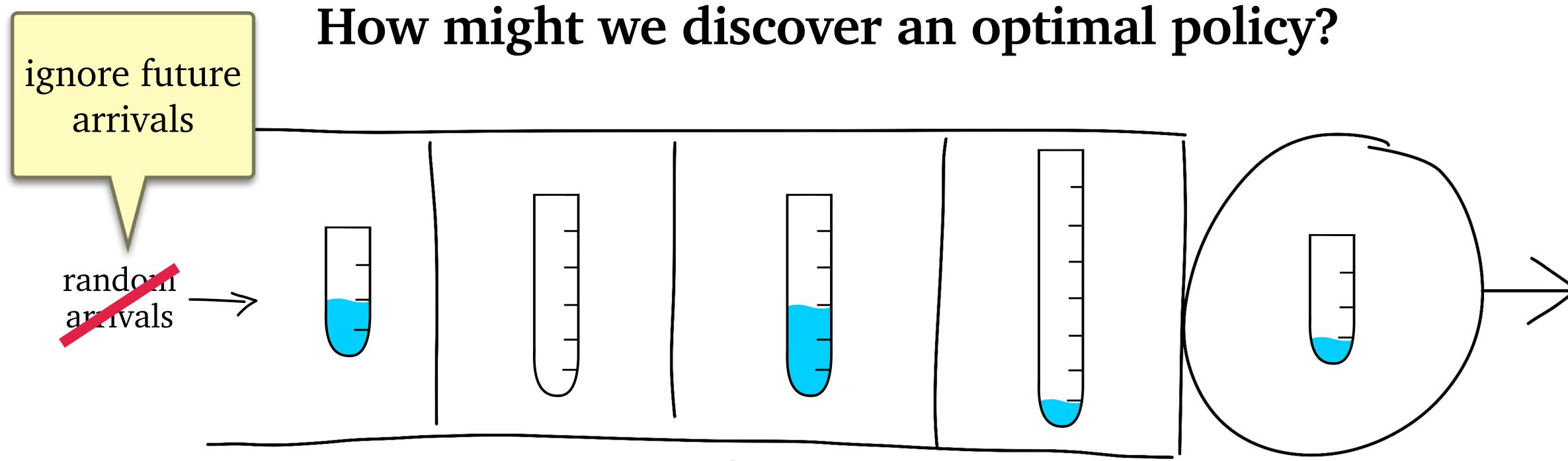
How might we discover an optimal policy?

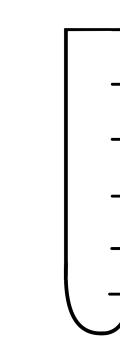


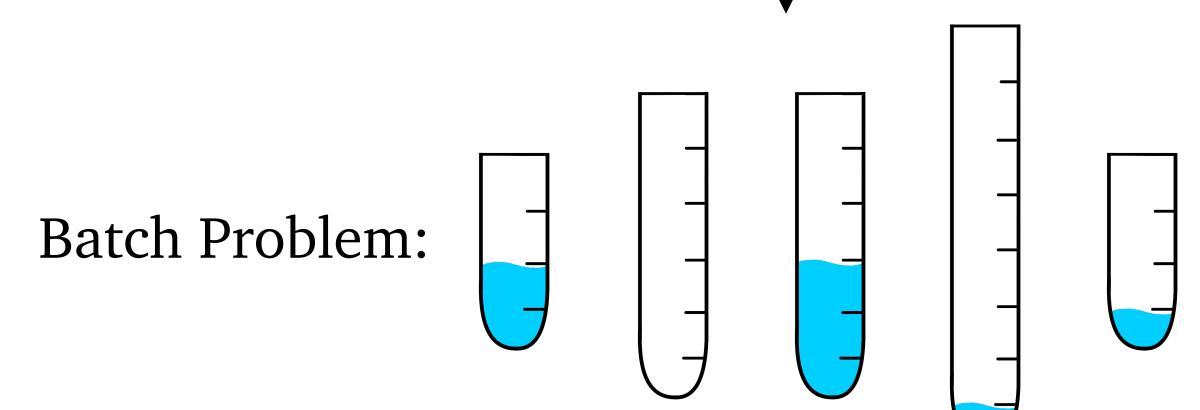
How might we discover an optimal policy?





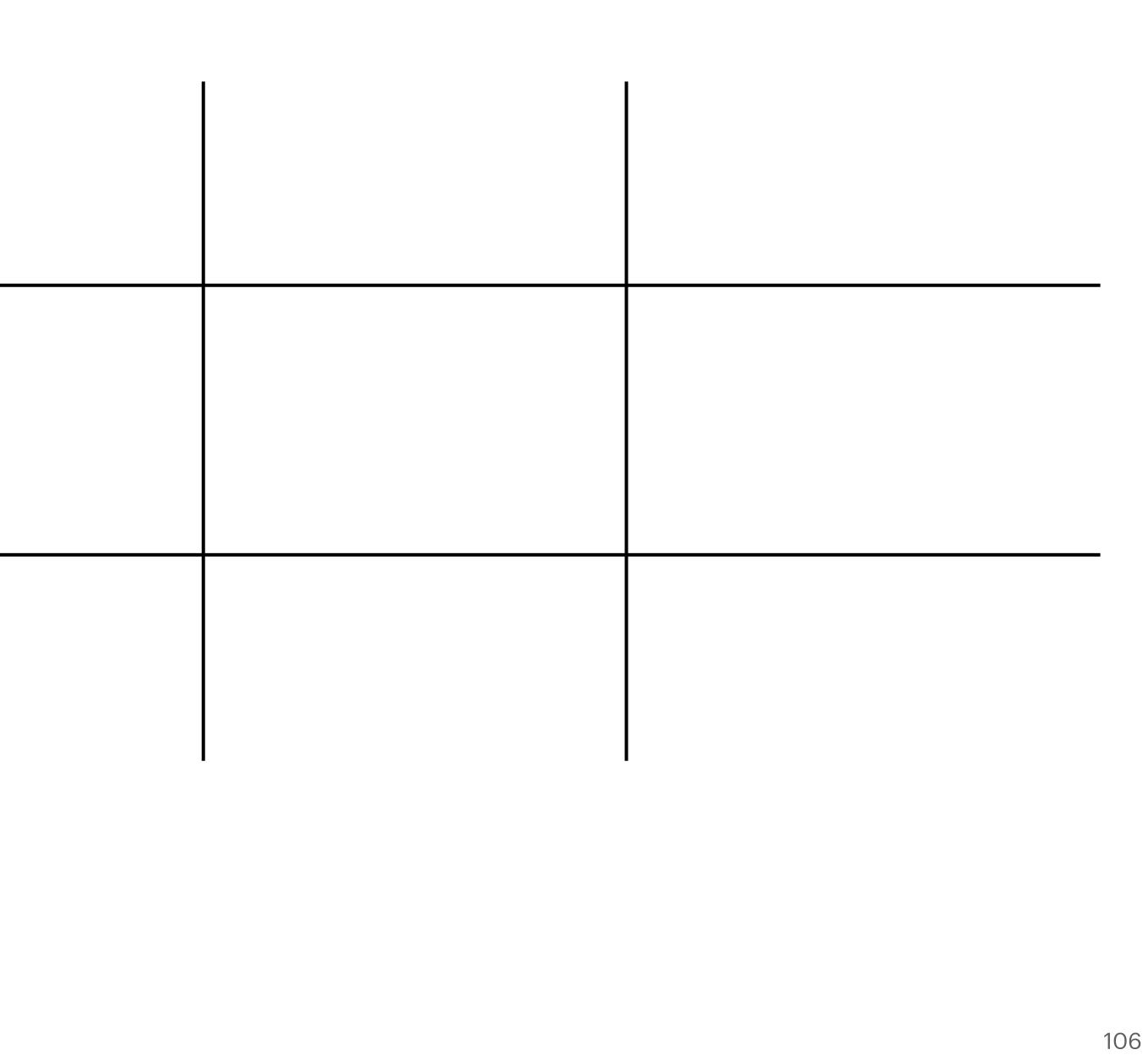






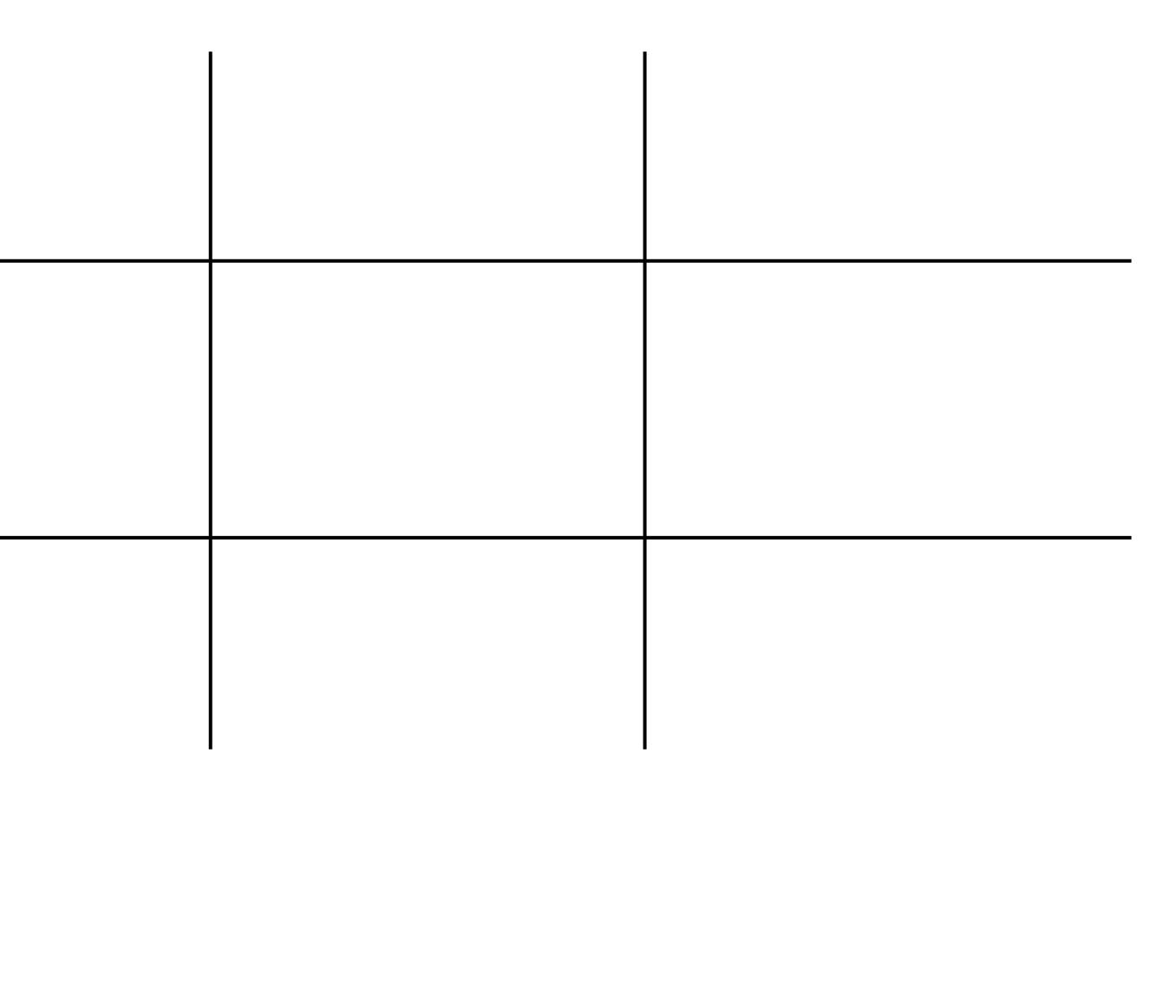
What is the optimal policy for the batch problem?

Queue Objective	
Batch Objective	
Optimal Policy	



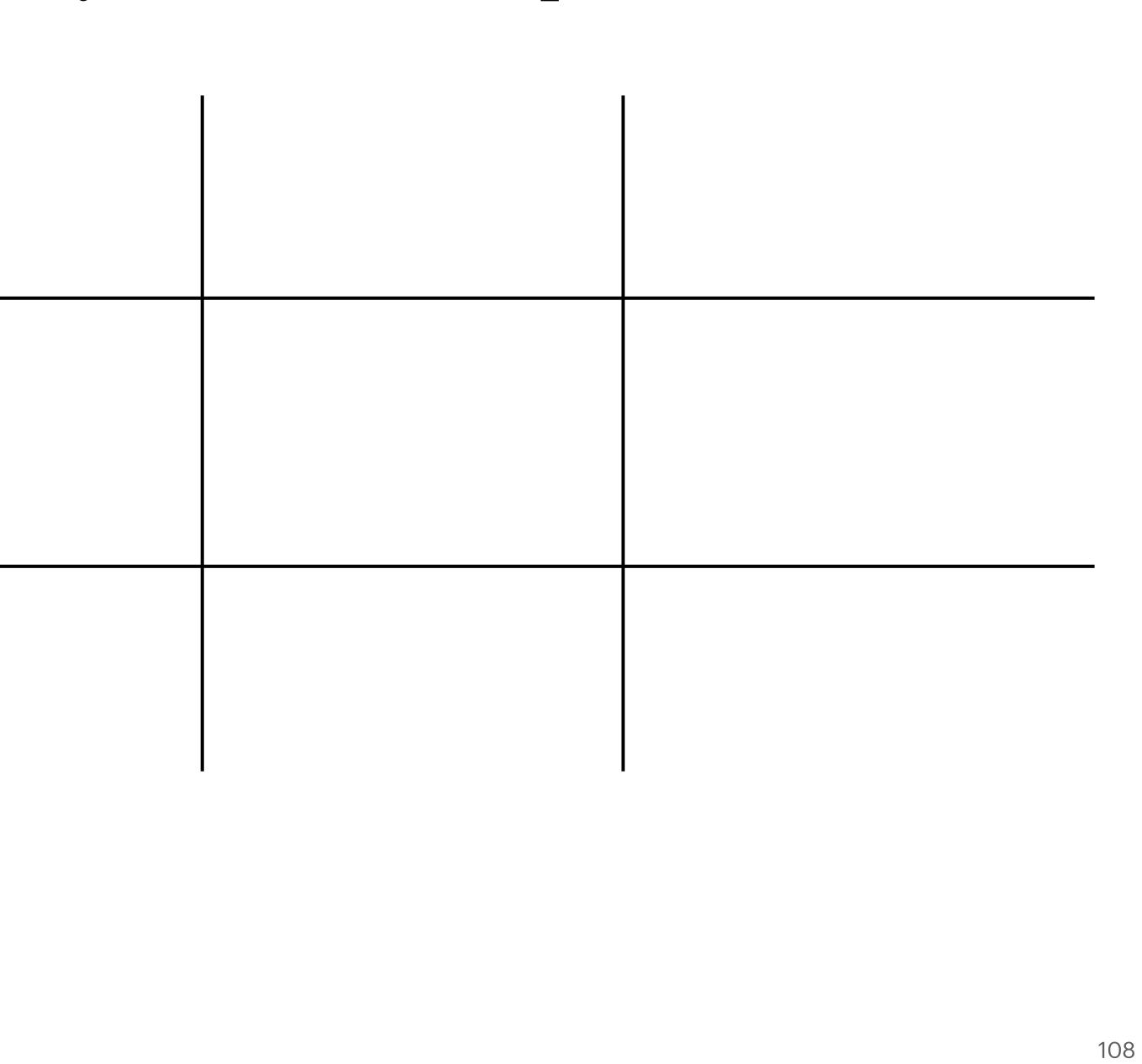
What is the optimal policy for the batch problem?

Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	
Batch Objective		
Optimal Policy		



What is the optimal policy for the batch problem?

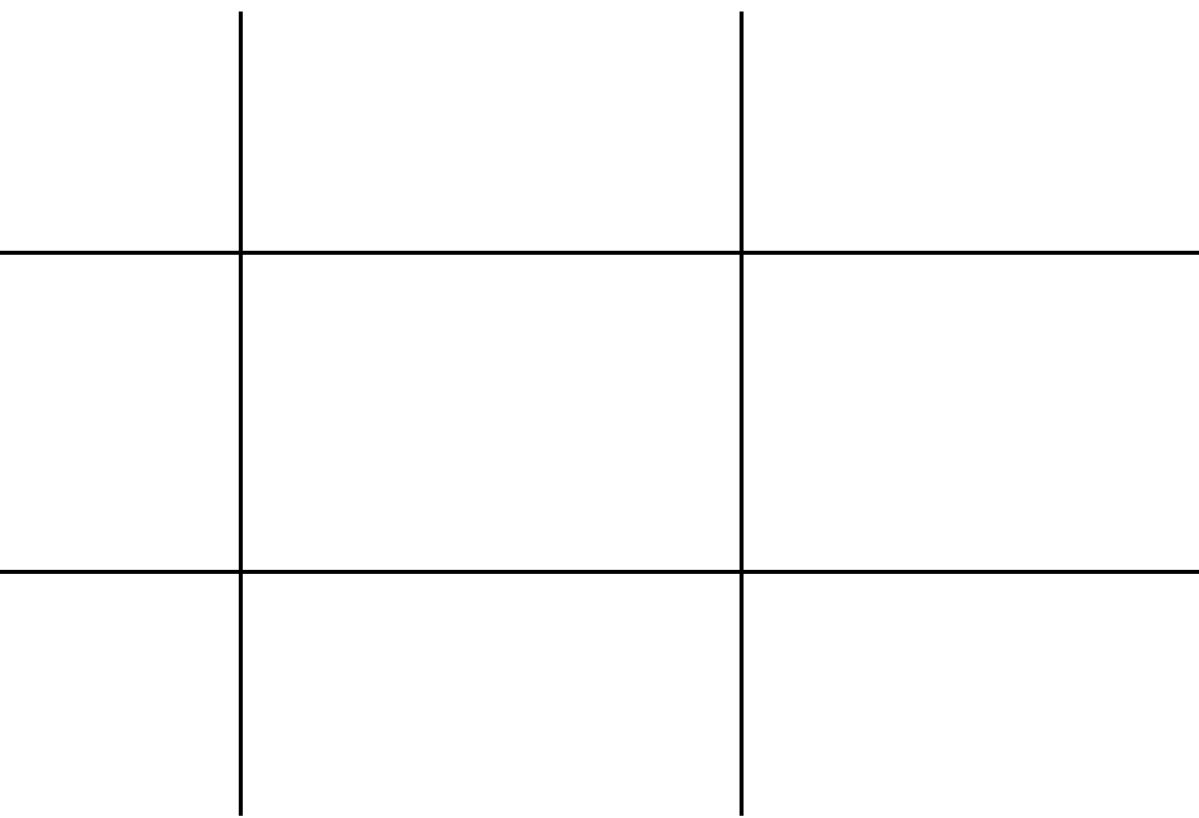
Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	
Batch Objective	$\frac{1}{N} \sum_{i=1}^{N} T_i$ w/ known sizes	
Optimal Policy		



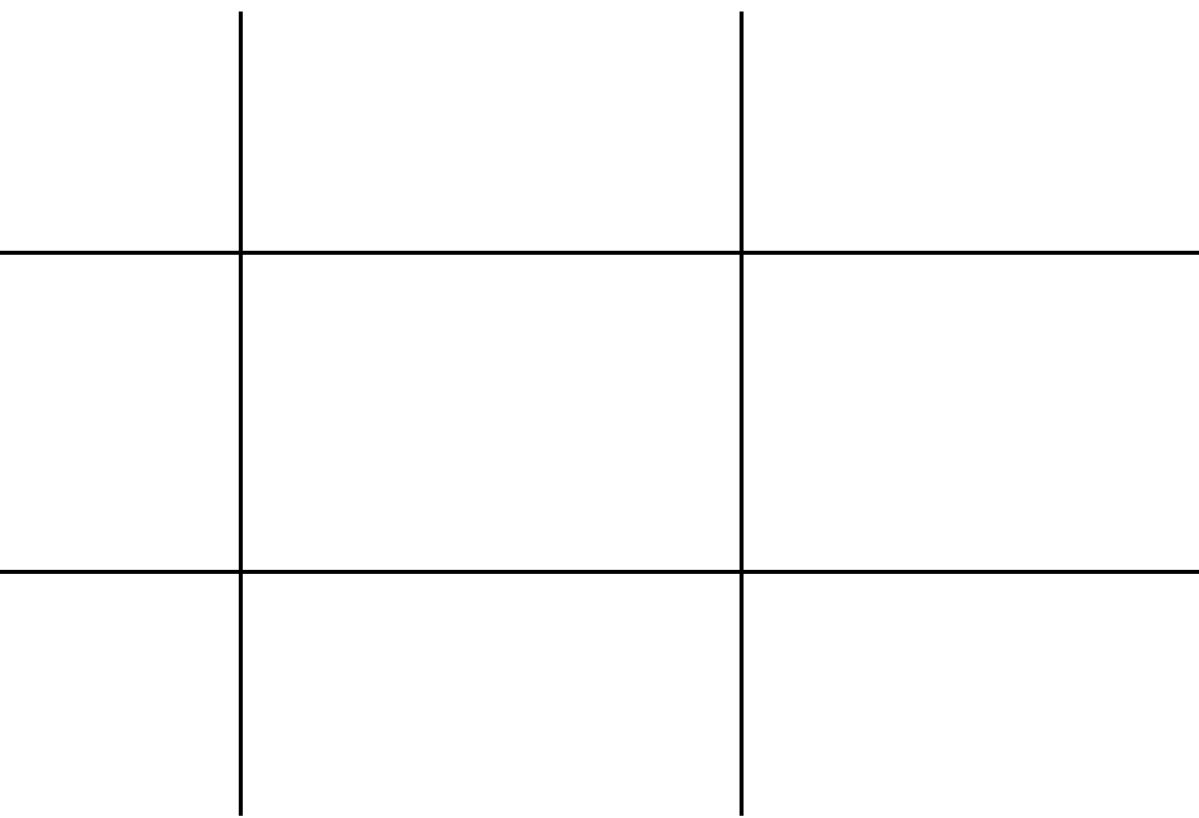
Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	
Batch Objective	$\sum_{i=1}^{N} T_i$ w/ known sizes	
Optimal Policy		



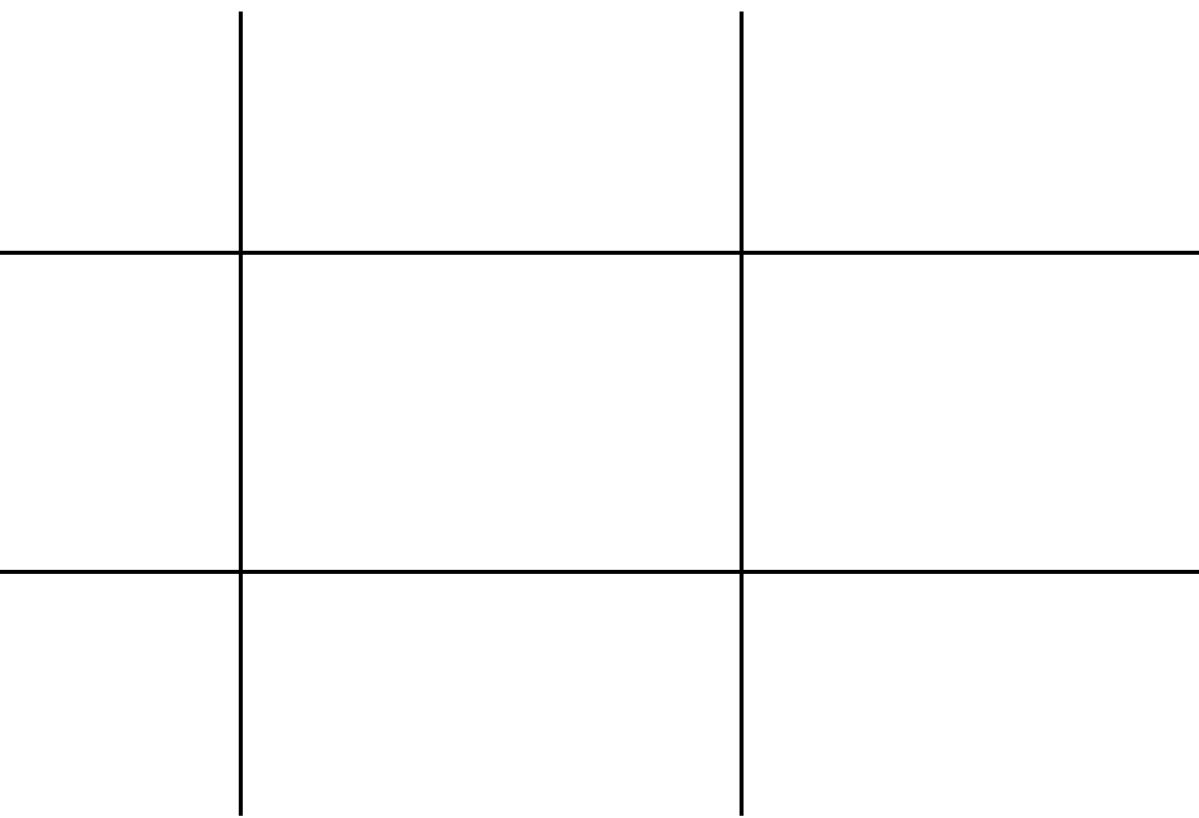
Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	
Batch Objective	$\sum_{i=1}^{N} (D_i - A_i)$ w/ known sizes	
Optimal Policy		



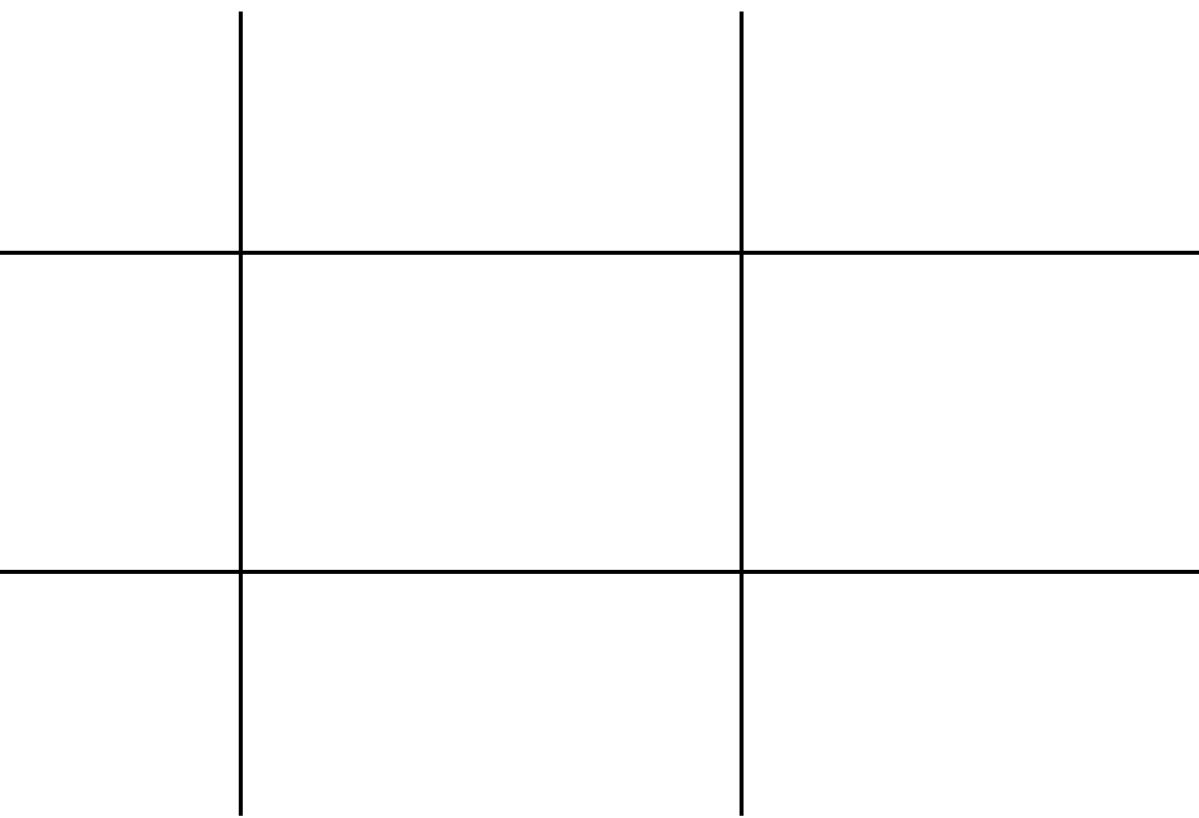
Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	
Batch Objective	$\sum_{i=1}^{N} D_i - \sum_{i=1}^{N} A_i$ w/ known sizes	
Optimal Policy		



Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	
Batch Objective	$\sum_{i=1}^{N} D_i$ w/ known sizes	
Optimal Policy		



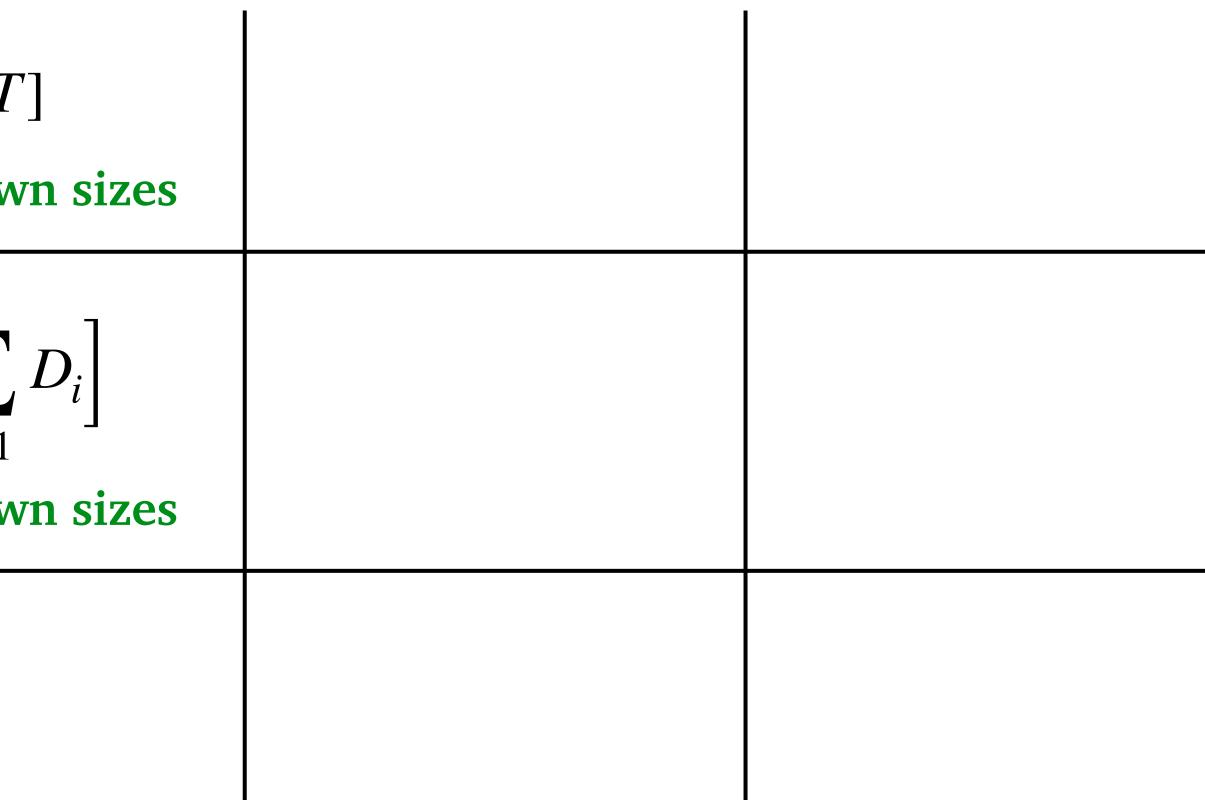
Queue Objective	E _π [<i>T</i>] w/ known sizes	
Batch Objective	$\sum_{i=1}^{N} D_i$ w/ known sizes	
Optimal Policy	SRPT	



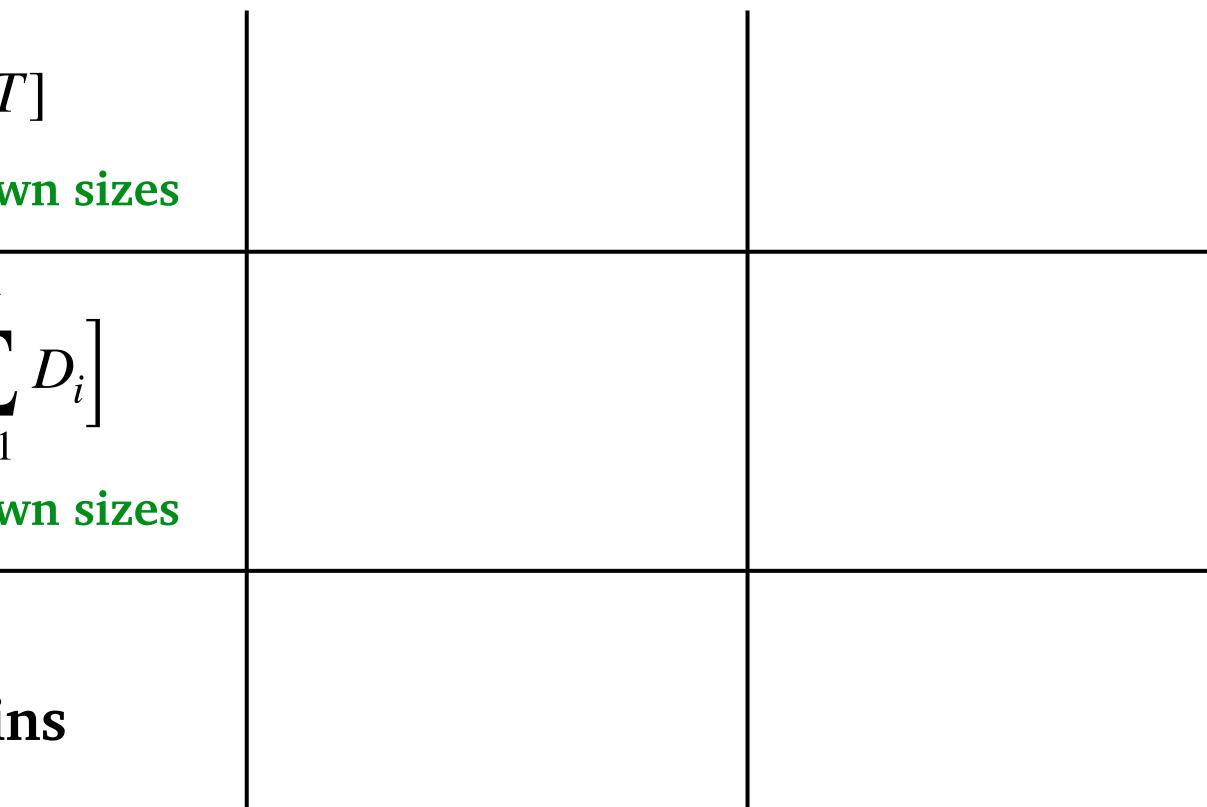
Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	$\mathbf{E}_{\pi}[T]$ w/ unknown sizes
Batch Objective	$\sum_{i=1}^{N} D_i$ w/ known sizes	
Optimal Policy	SRPT	

[] vn sizes	

Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	E _π [T w/ unknow
Batch Objective	$\sum_{i=1}^{N} D_i$ w/ known sizes	$\mathbf{E}_{\pi} \Big[\sum_{i=1}^{N} \mathbf{w} / \mathbf{unknow} \Big]$
Optimal Policy	SRPT	

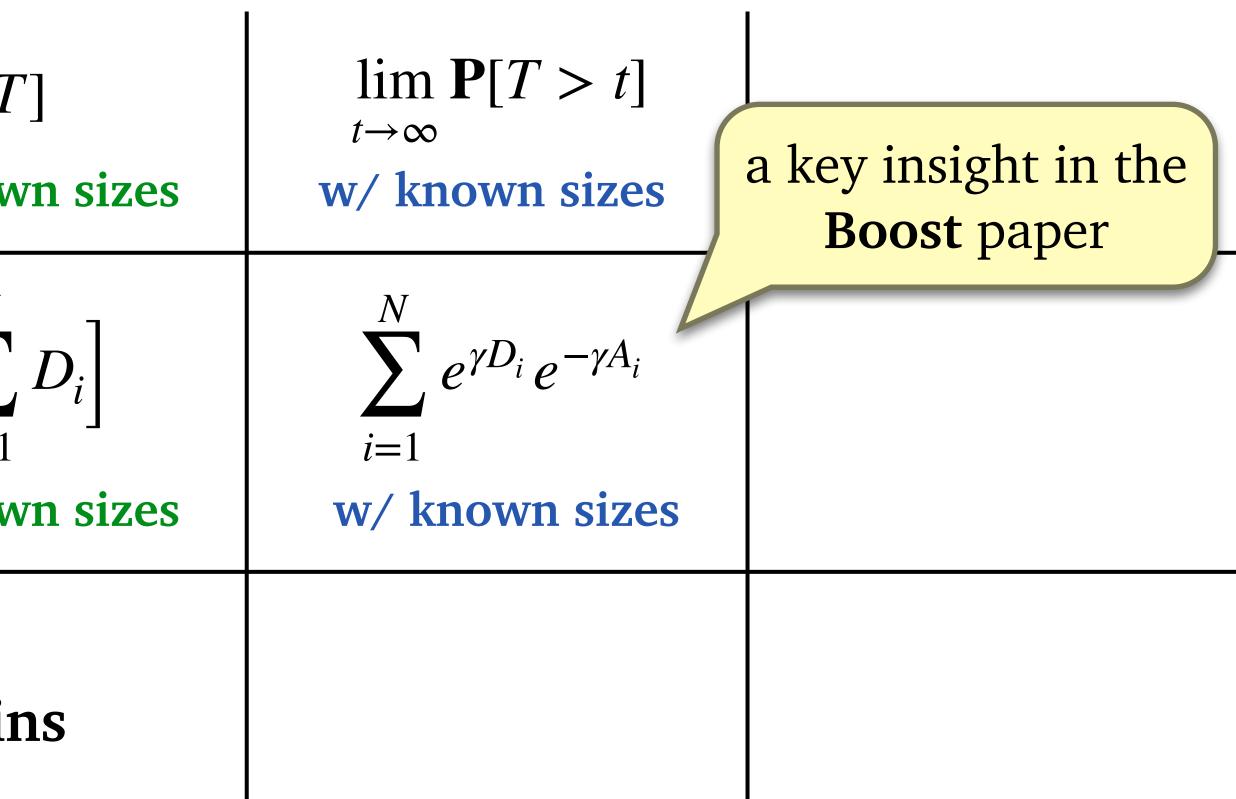


Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	E _π [7 w/ unknow
Batch Objective	$\sum_{i=1}^{N} D_i$ w/ known sizes	$\mathbf{E}_{\pi} \left[\sum_{i=1}^{N} \mathbf{w} \right]$
Optimal Policy	SRPT	Gittir

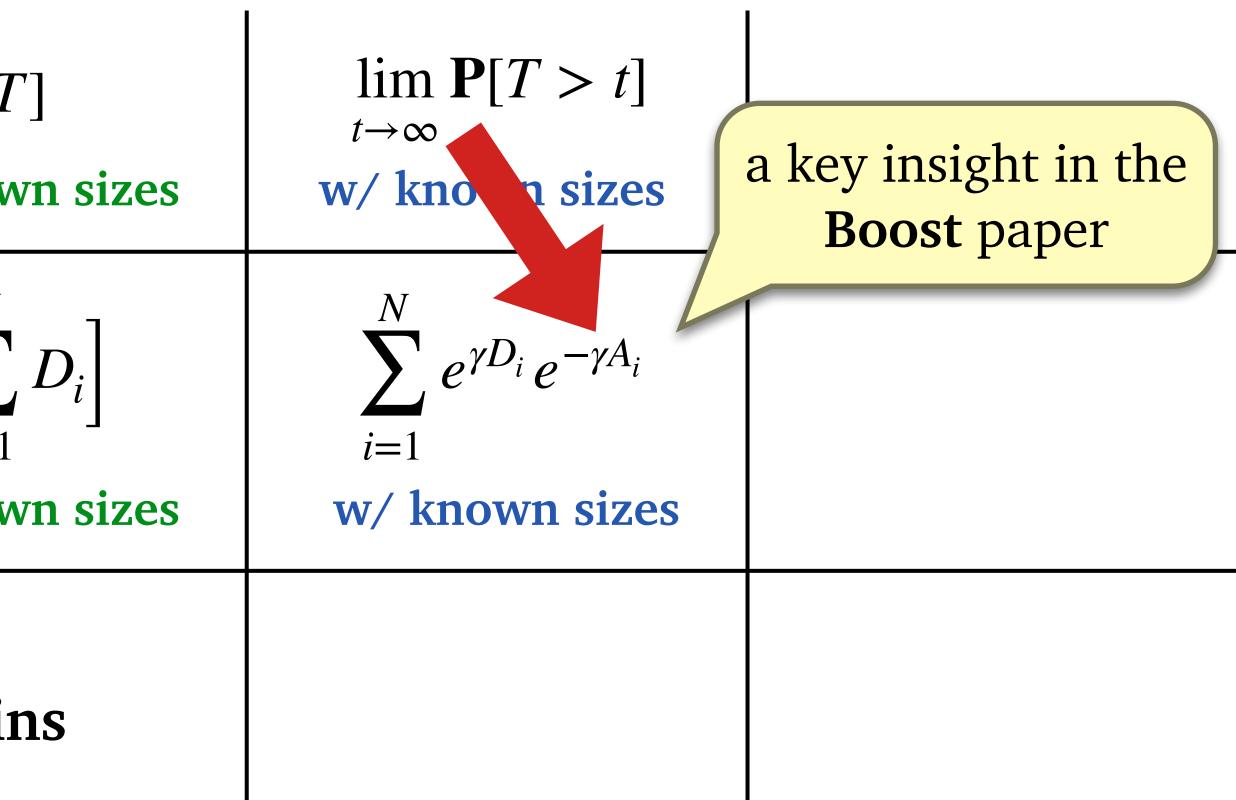


Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	$\mathbf{E}_{\pi}[T]$ w/ unknown sizes	$\lim_{t \to \infty} \mathbf{P}[T > t]$ w/ known sizes	
Batch Objective	$\sum_{i=1}^{N} D_i$ w/ known sizes	$\mathbf{E}_{\pi} \Big[\sum_{i=1}^{N} D_{i} \Big]$ w/ unknown sizes		
Optimal Policy	SRPT	Gittins		

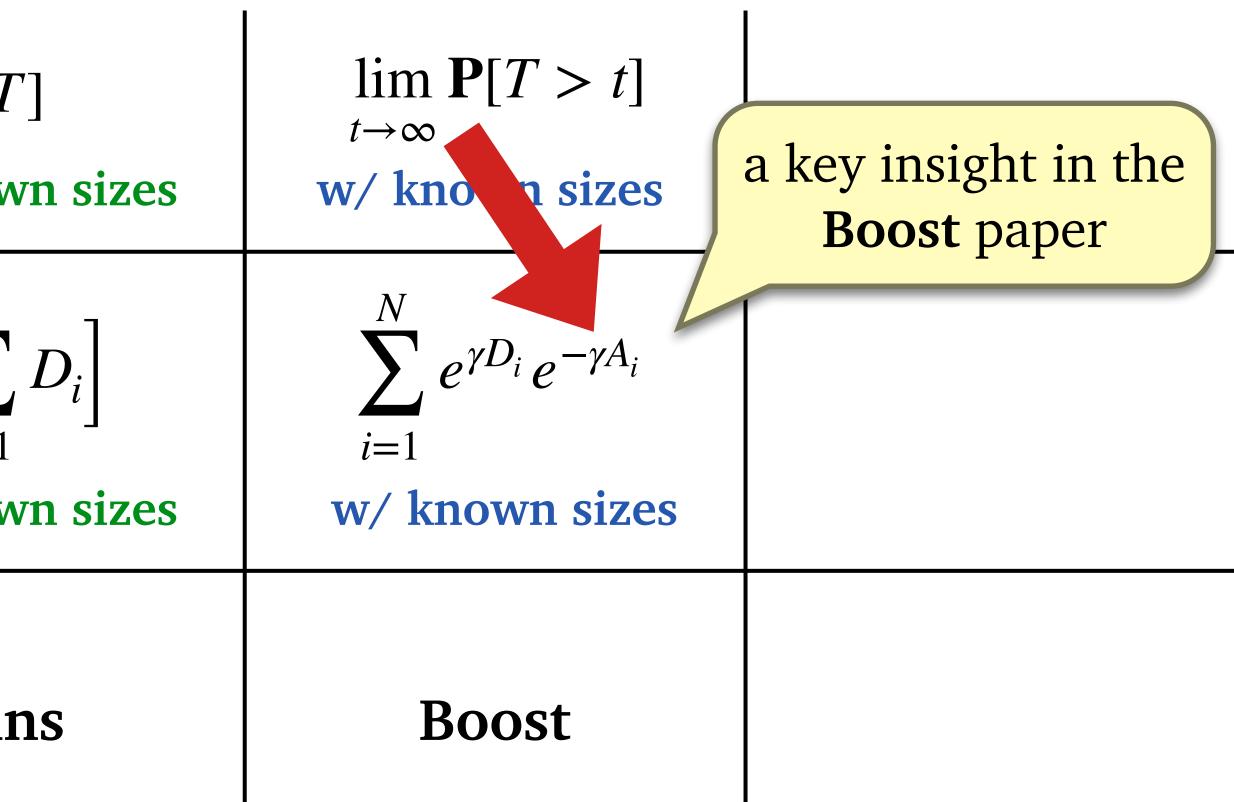
Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	E _π [7 w/ unknow
Batch Objective	$\sum_{i=1}^{N} D_i$ w/ known sizes	$\mathbf{E}_{\pi} \left[\sum_{i=1}^{N} \mathbf{w} \right]$
Optimal Policy	SRPT	Gittir



Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	E _π [7 w/ unknow
Batch Objective	$\sum_{i=1}^{N} D_i$ w/ known sizes	$\mathbf{E}_{\pi} \left[\sum_{i=1}^{N} \mathbf{w} \right]$
Optimal Policy	SRPT	Gittir



Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	E _π [7 w/ unknow
Batch Objective	$\sum_{i=1}^{N} D_i$ w/ known sizes	$\mathbf{E}_{\pi} \Big[\sum_{i=1}^{N} \mathbf{w} \Big]$ w/ unknow
Optimal Policy	SRPT	Gittir



Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	$\mathbf{E}_{\pi}[T]$ w/ unknown sizes	$\lim_{t \to \infty} \mathbf{P}[T > t]$ w/ known sizes	$\lim_{t\to\infty} \mathbf{P}[T > t]$ w/ unknown sizes
Batch Objective	$\sum_{i=1}^{N} D_i$ w/ known sizes	$\mathbf{E}_{\pi} \Big[\sum_{i=1}^{N} D_{i} \Big]$ w/ unknown sizes	$\sum_{i=1}^{N} e^{\gamma D_i} e^{-\gamma A_i}$ w/ known sizes	
Optimal Policy	SRPT	Gittins	Boost	

Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	$\mathbf{E}_{\pi}[T]$ w/ unknown sizes	$\lim_{t \to \infty} \mathbf{P}[T > t]$ w/ known sizes	$\lim_{t\to\infty} \mathbf{P}[T > t]$ w/ unknown sizes
Batch Objective	$\sum_{i=1}^{N} D_i$ w/ known sizes	$\mathbf{E}_{\pi} \Big[\sum_{i=1}^{N} D_{i} \Big]$ w/ unknown sizes	$\sum_{i=1}^{N} e^{\gamma D_i} e^{-\gamma A_i}$ <i>i</i> =1 w/ known sizes	$\mathbf{E}_{\pi} \Big[\sum_{i=1}^{N} e^{\gamma D_{i}} e^{-\gamma A_{i}} \Big]$ w/ unknown sizes
Optimal Policy	SRPT	Gittins	Boost	

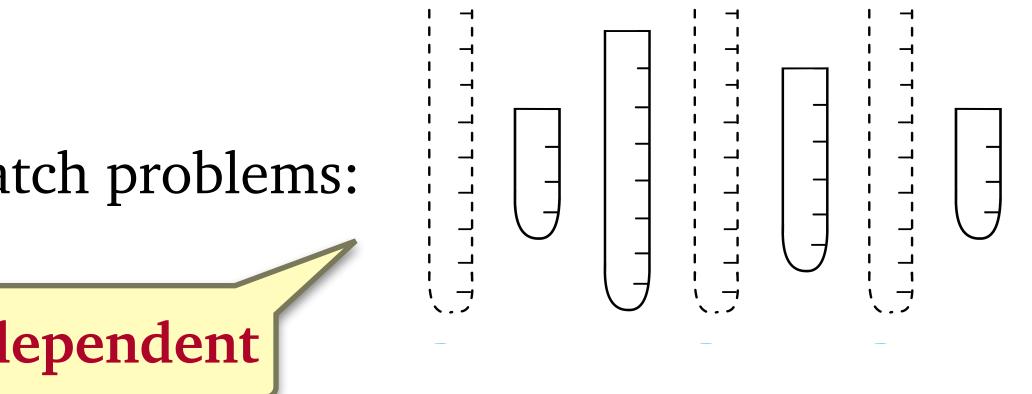
Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	$\mathbf{E}_{\pi}[T]$ w/ unknown sizes	$\lim_{t \to \infty} \mathbf{P}[T > t]$ w/ known sizes	$\lim_{t\to\infty} \mathbf{P}[T > t]$ w/ unknown sizes
Batch Objective	$\sum_{i=1}^{N} D_i$ w/ known sizes	$\mathbf{E}_{\pi} \Big[\sum_{i=1}^{N} D_{i} \Big]$ w/ unknown sizes	$\sum_{i=1}^{N} e^{\gamma D_i} e^{-\gamma A_i}$ <i>i</i> =1 w/ known sizes	$\mathbf{E}_{\pi} \left[\sum_{i=1}^{N} e^{\gamma D_{i}} e^{-\gamma A_{i}} \right]$ w/ unknown sizes
Optimal Policy	SRPT	Gittins	Boost	GittinsBoost

Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	$\mathbf{E}_{\pi}[T]$ w/ unknown sizes	$\lim_{t\to\infty} \mathbf{P}[T > t]$ w/ known sizes	$\lim_{t\to\infty} \mathbf{P}[T > t]$ w/ unknown sizes
Batch Objective	$\sum_{i=1}^{N} D_i$ w/ known sizes	$\mathbf{E}_{\pi} \Big[\sum_{i=1}^{N} D_i \Big]$ w/ unknown sizes	$\sum_{i=1}^{N} e^{\gamma D_i} e^{-\gamma A_i}$ w/ known sizes	$\mathbf{E}_{\pi} \Big[\sum_{i=1}^{N} e^{\gamma D_{i}} e^{-\gamma A_{i}} \Big]$ w/ unknown sizes
Optimal Policy	SRPT	Gittins	Boost	GittinsBoost

All of these are in the Gittins family of policies!

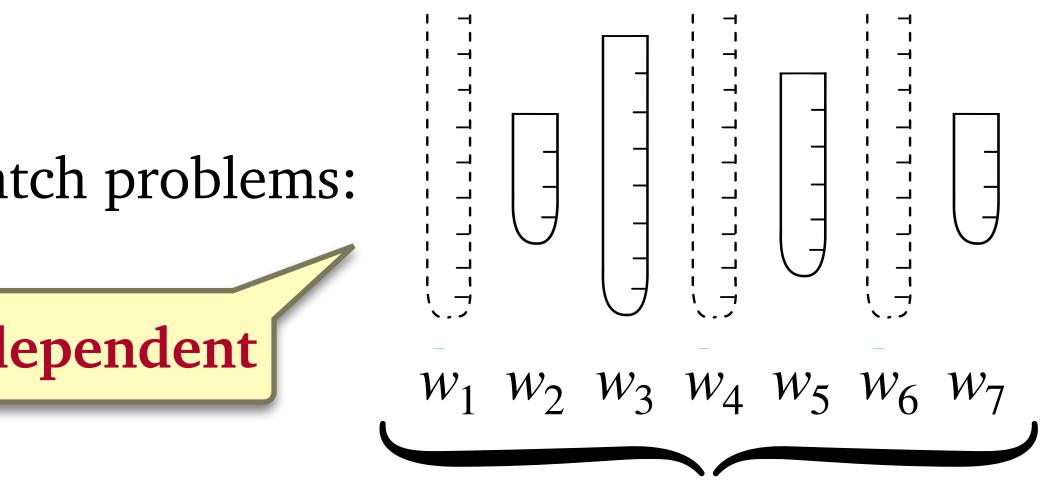
Gittins policies solve the family of batch problems:

job sizes independent



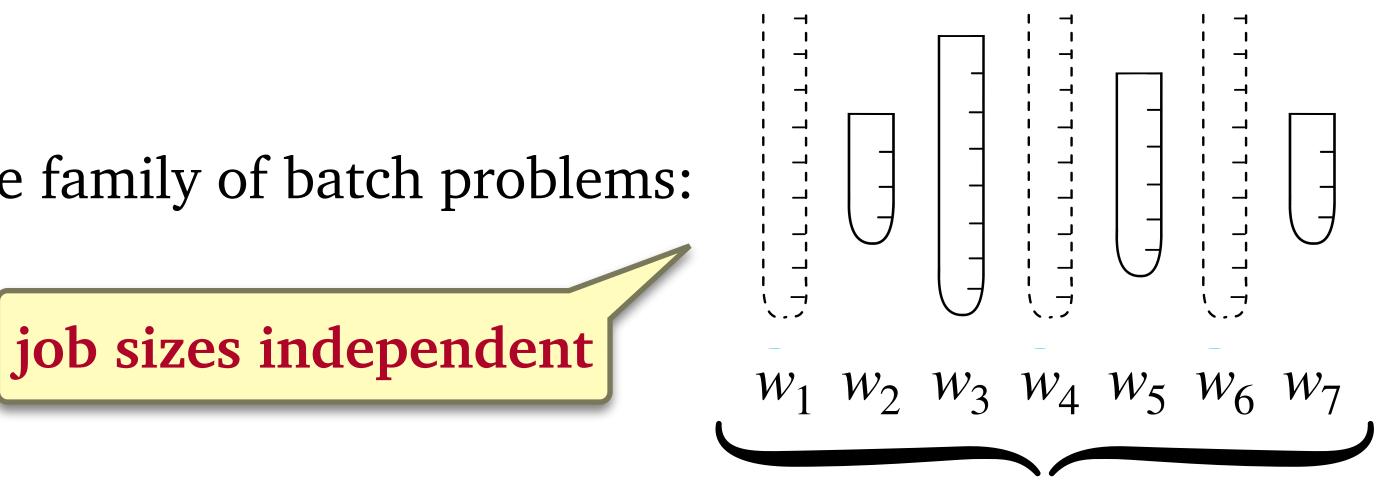
Gittins policies solve the family of batch problems:

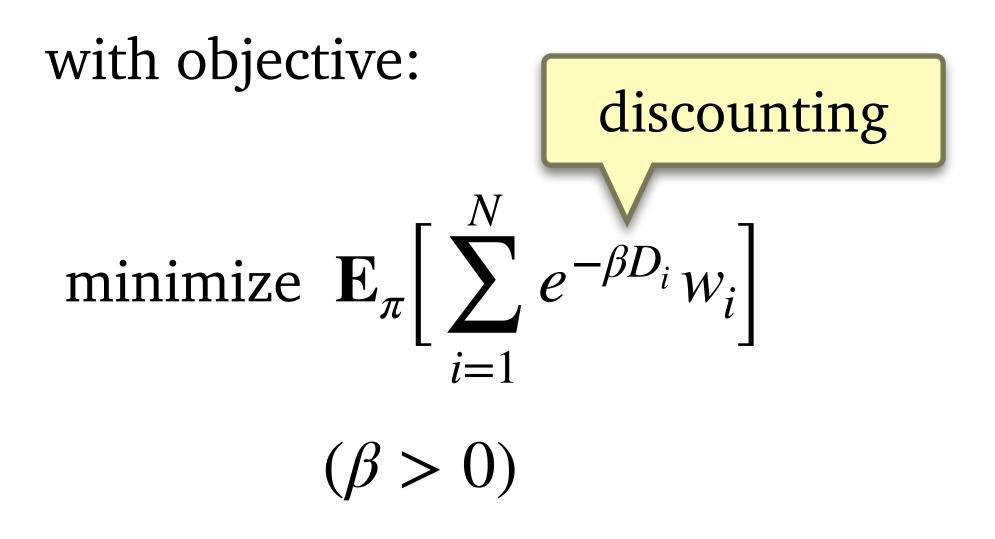
job sizes independent



cost at completion

Gittins policies solve the family of batch problems:

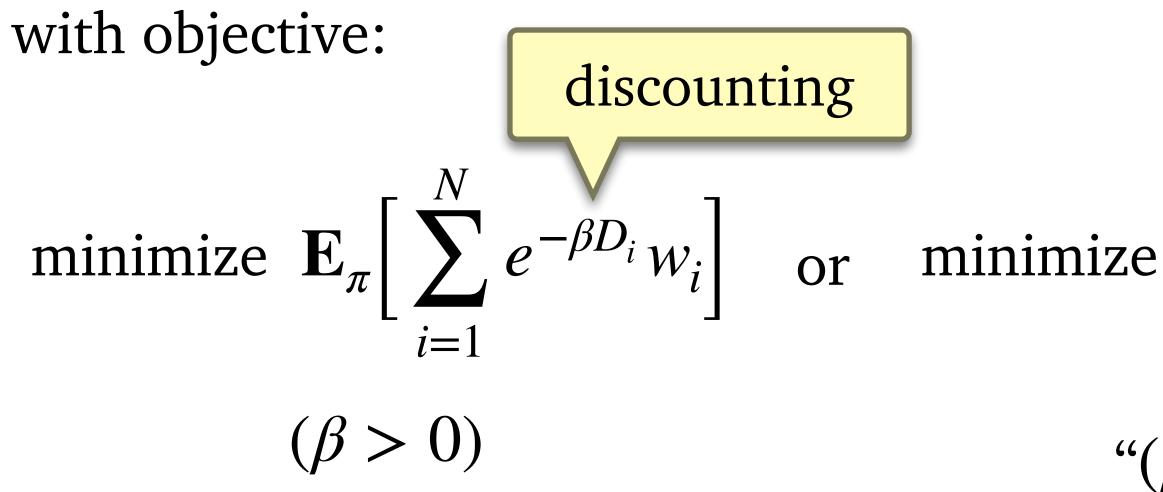


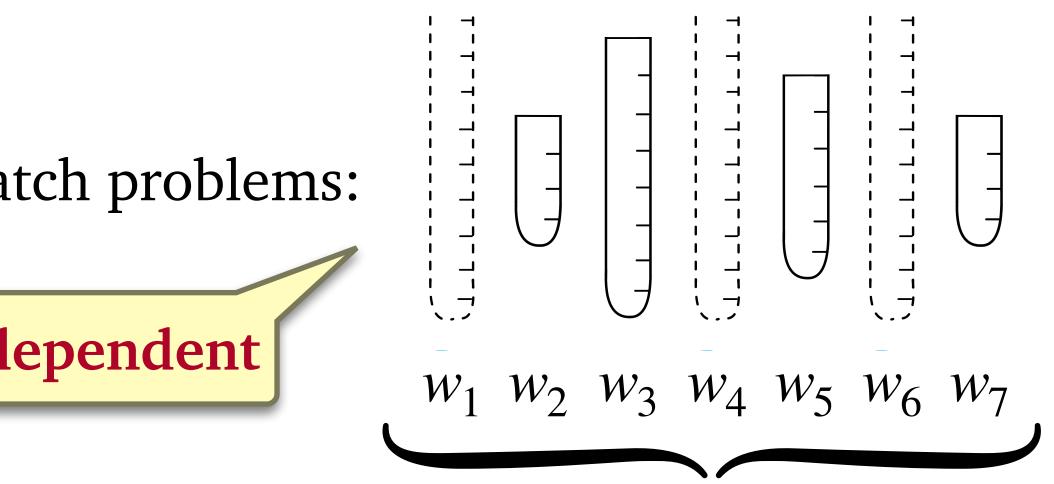


cost at completion

Gittins policies solve the family of batch problems:

job sizes independent





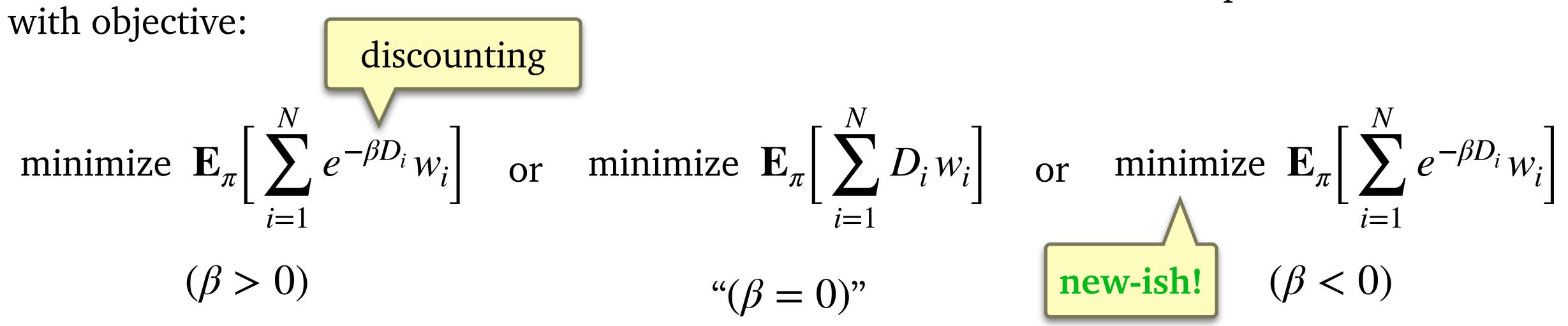
cost at completion

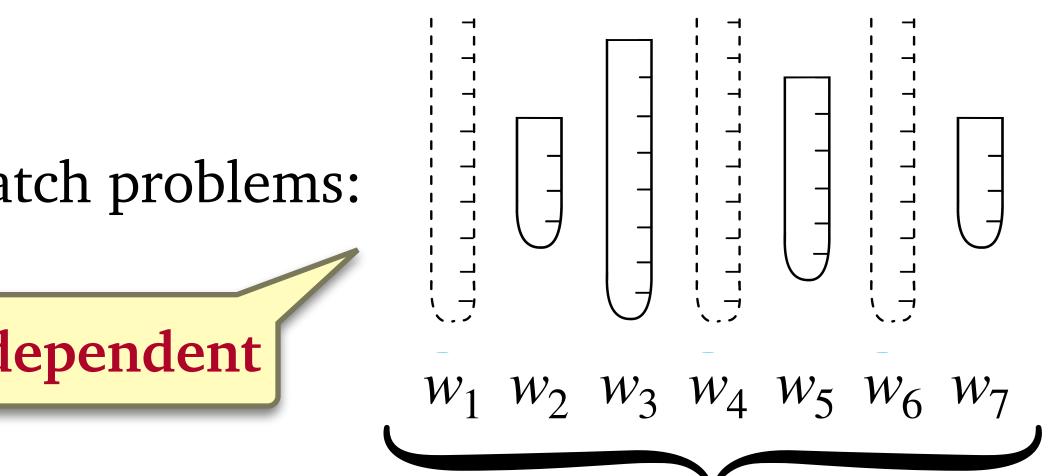
$$\mathbf{E}_{\pi} \left[\sum_{i=1}^{N} D_{i} w_{i} \right]$$

"($\beta = 0$)"

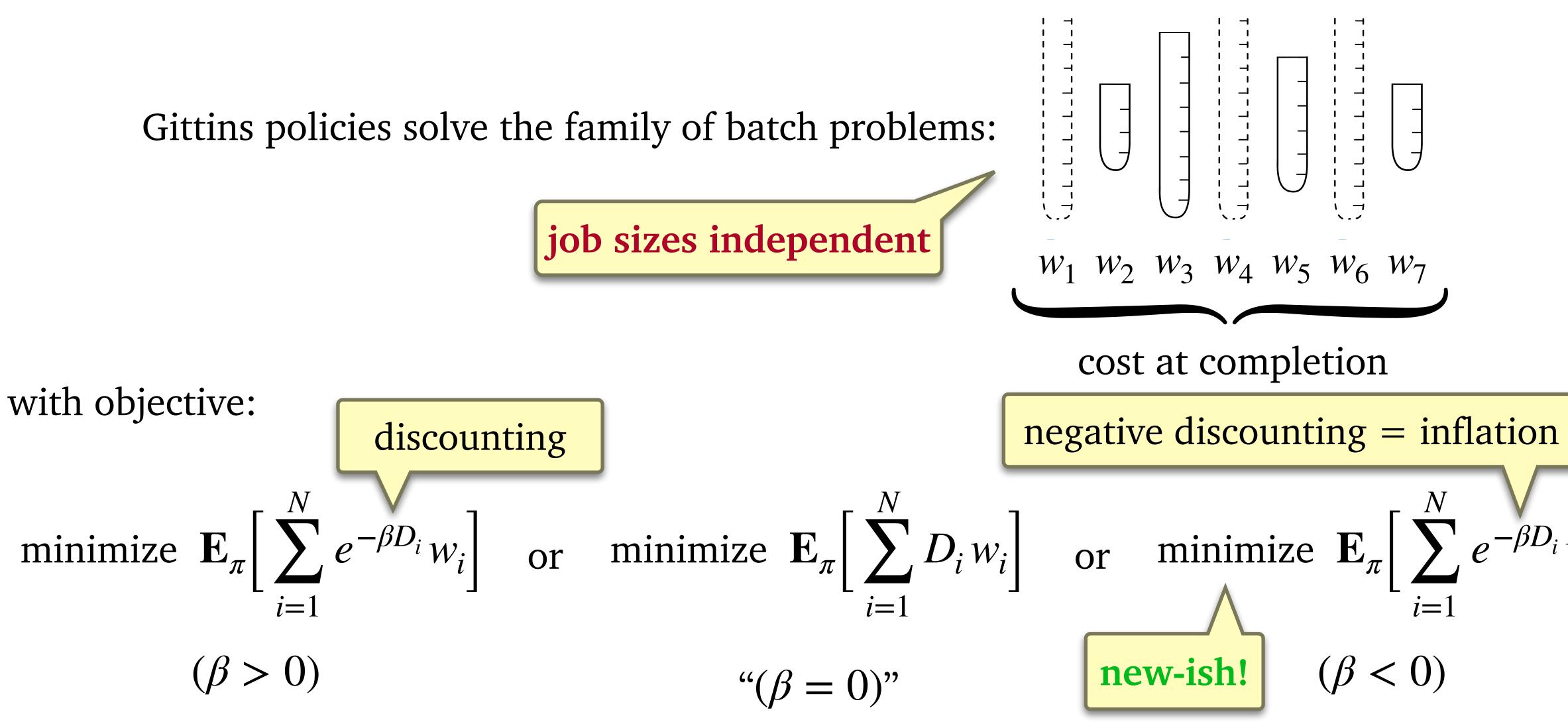
Gittins policies solve the family of batch problems:

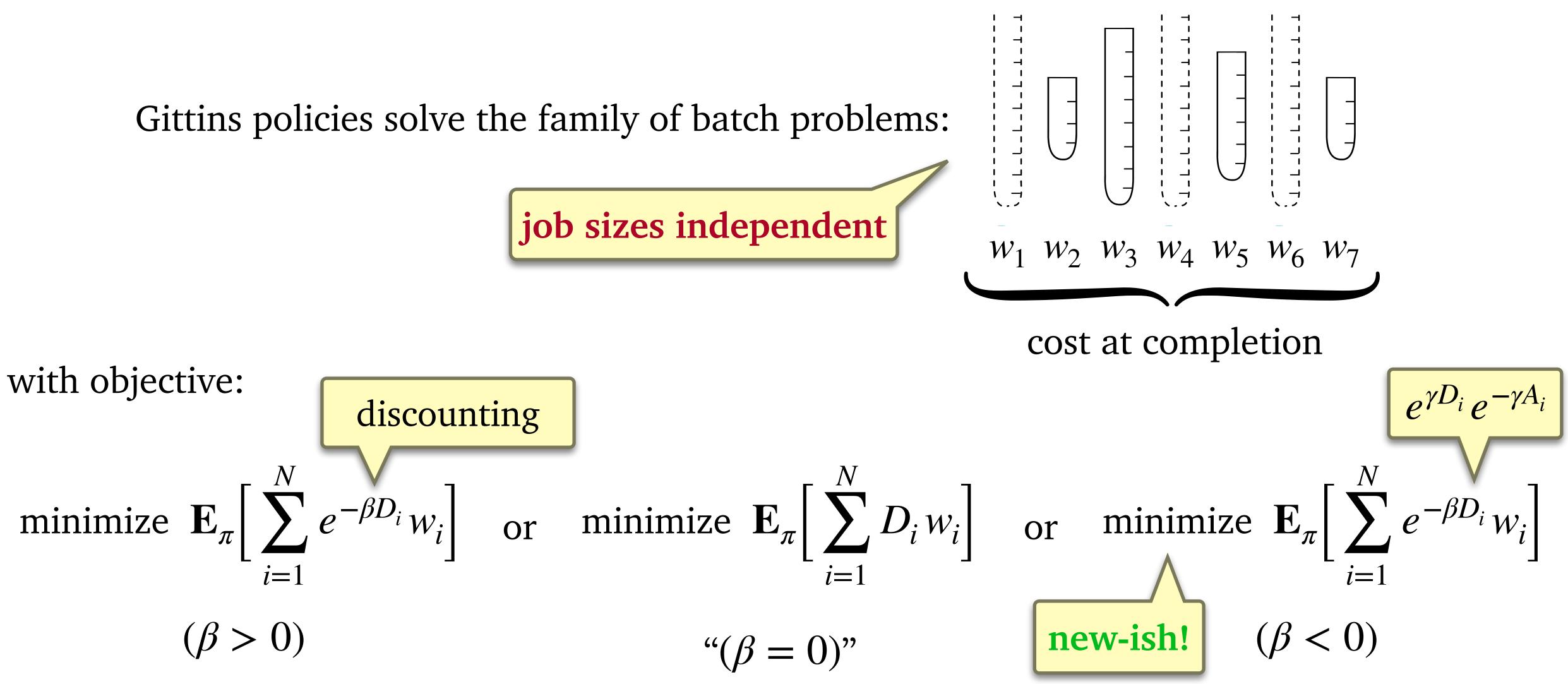
job sizes independent





cost at completion





Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	$\mathbf{E}_{\pi}[T]$ w/ unknown sizes	$\lim_{t\to\infty} \mathbf{P}[T > t]$ w/ known sizes	$\lim_{t\to\infty} \mathbf{P}[T > t]$ w/ unknown sizes
Batch Objective	$\sum_{i=1}^{N} D_i$ w/ known sizes	$\mathbf{E}_{\pi} \Big[\sum_{i=1}^{N} D_i \Big]$ w/ unknown sizes	$\sum_{i=1}^{N} e^{\gamma D_i} e^{-\gamma A_i}$ w/ known sizes	$\mathbf{E}_{\pi} \Big[\sum_{i=1}^{N} e^{\gamma D_{i}} e^{-\gamma A_{i}} \Big]$ w/ unknown sizes
Optimal Policy	SRPT	Gittins	Boost	GittinsBoost

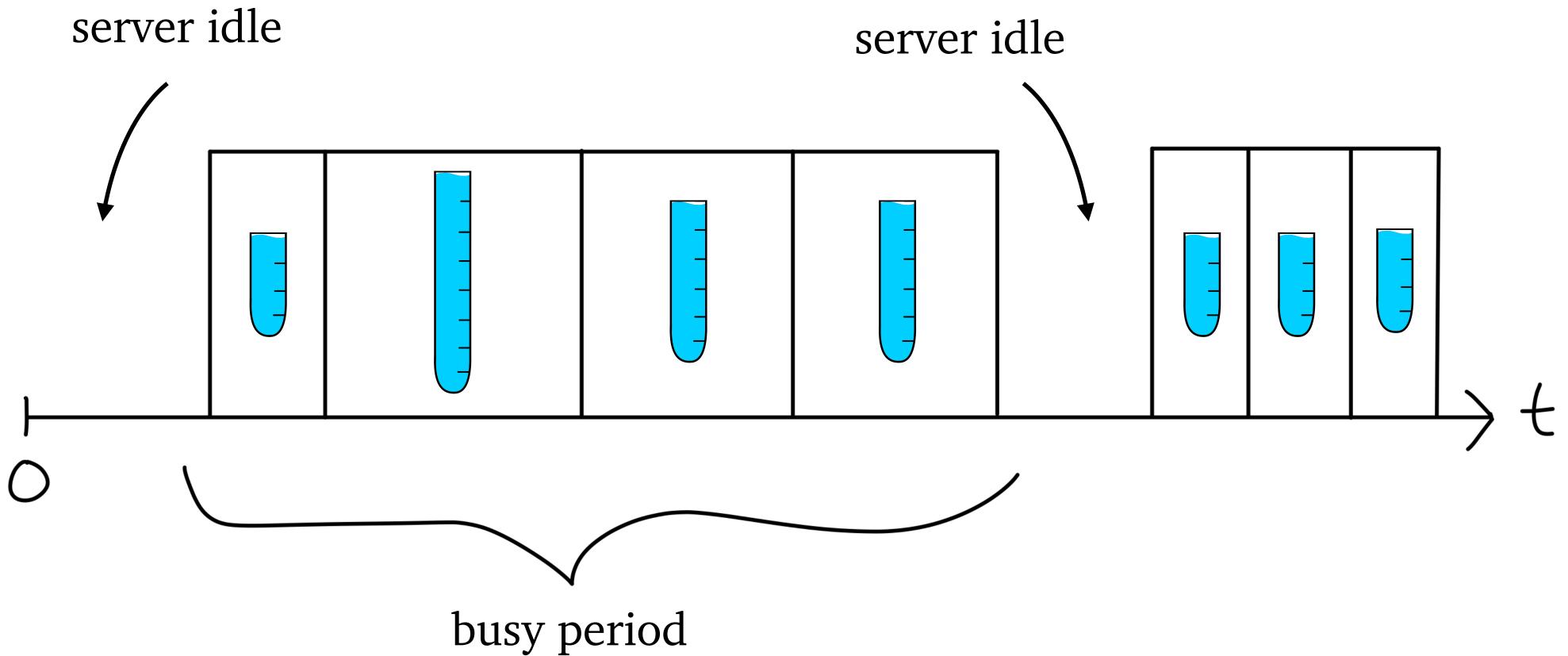
All of these are in the Gittins family of policies!

Queue Objective	$\mathbf{E}_{\pi}[T]$ w/ known sizes	$\mathbf{E}_{\pi}[T]$ w/ unknown sizes	$\lim_{t\to\infty} \mathbf{P}[T > t]$ w/ known sizes	$\lim_{t\to\infty} \mathbf{P}[T > t]$ w/ unknown sizes
Batch Objective	$\sum_{i=1}^{N} D_i$ w/ known sizes	$\mathbf{E}_{\pi} \Big[\sum_{i=1}^{N} D_{i} \Big]$ w/ unknown sizes	$\sum_{i=1}^{N} e^{\gamma D_i} e^{-\gamma A_i}$ w/ known sizes	$\mathbf{E}_{\pi} \Big[\sum_{i=1}^{N} e^{\gamma D_{i}} e^{-\gamma A_{i}} \Big]$ w/ unknown sizes
Optimal Policy	SRPT	Gittins	Boost	GittinsBoost

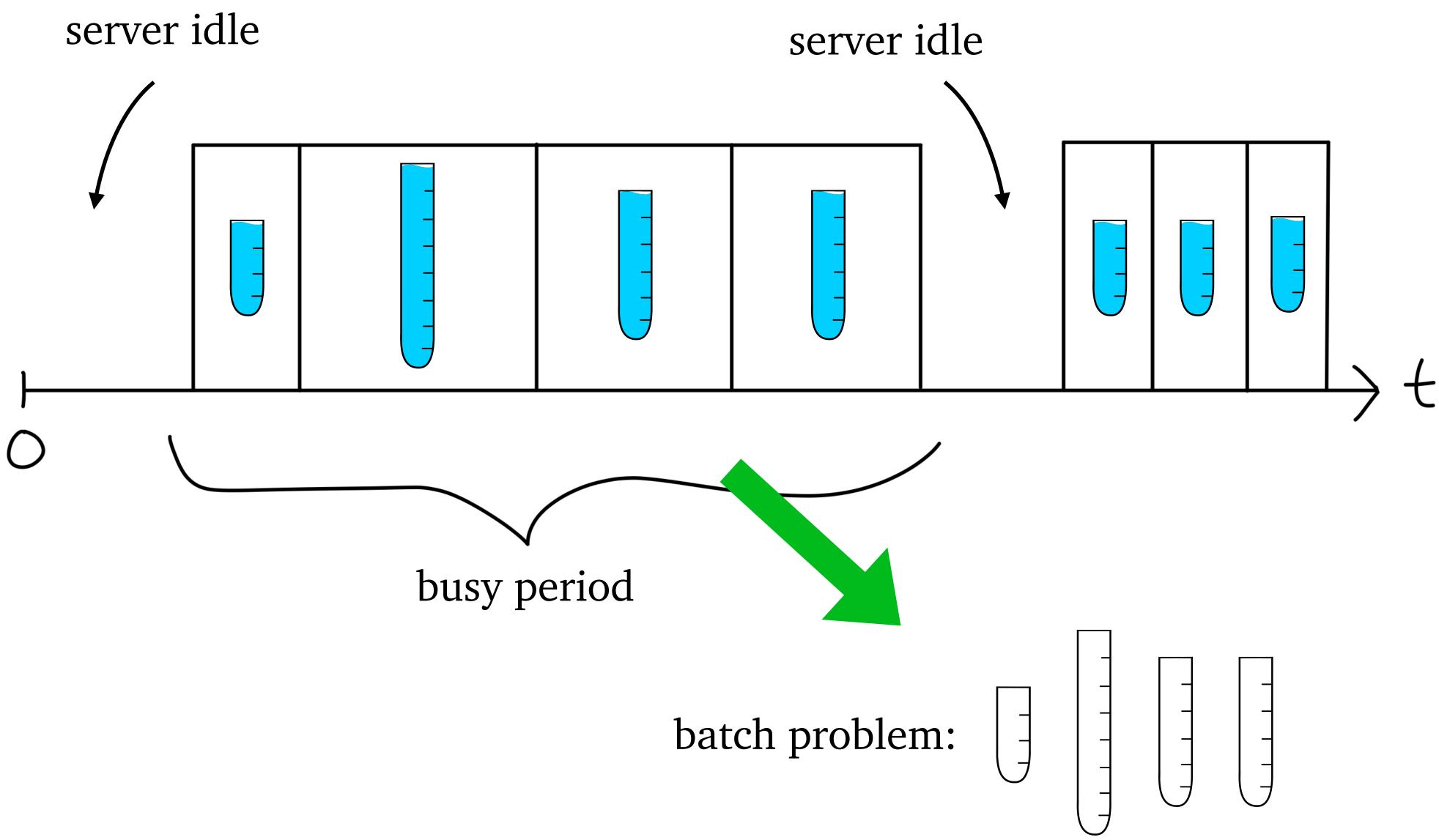
All of these are in the Gittins family of policies!

How do we show optimality in the queue setting?

Boost optimality in the queue setting



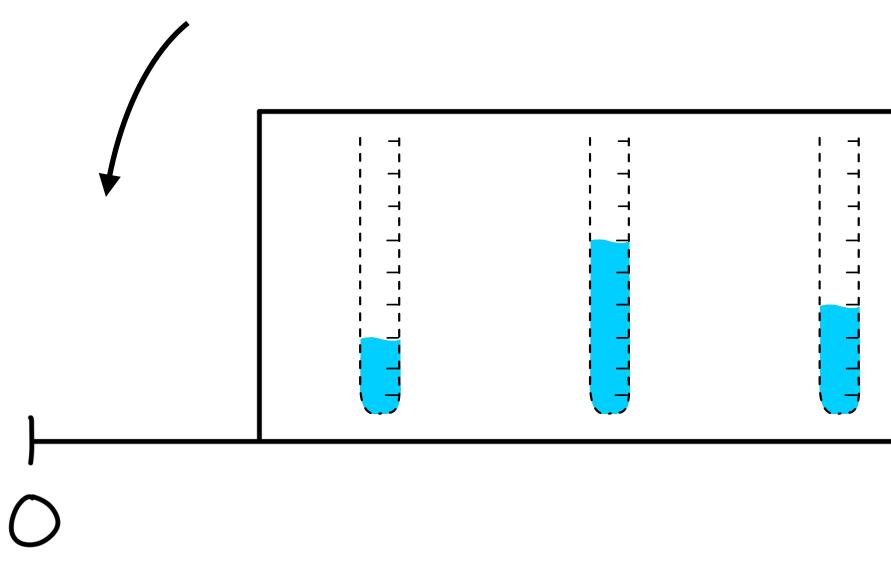
Boost optimality in the queue setting

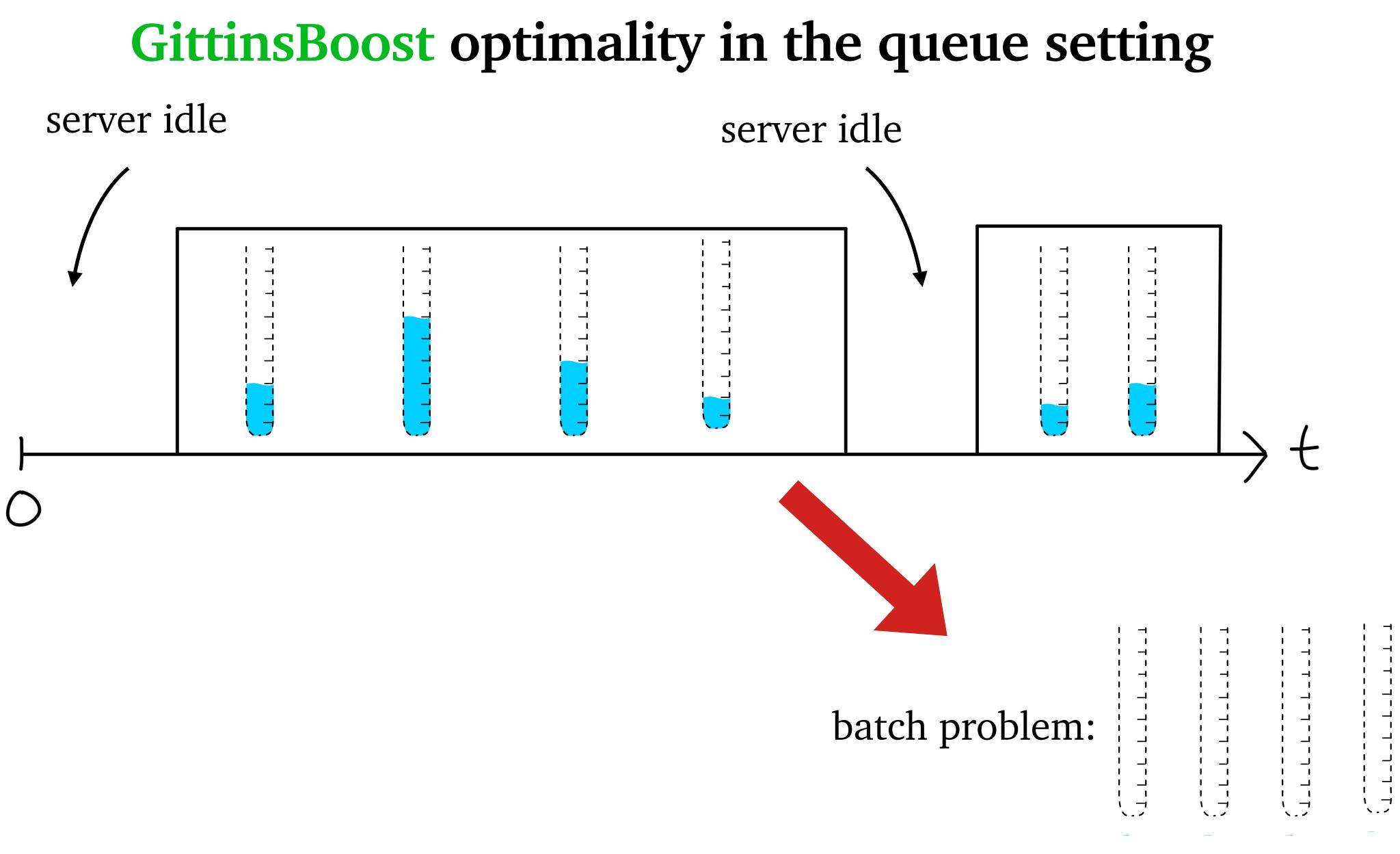


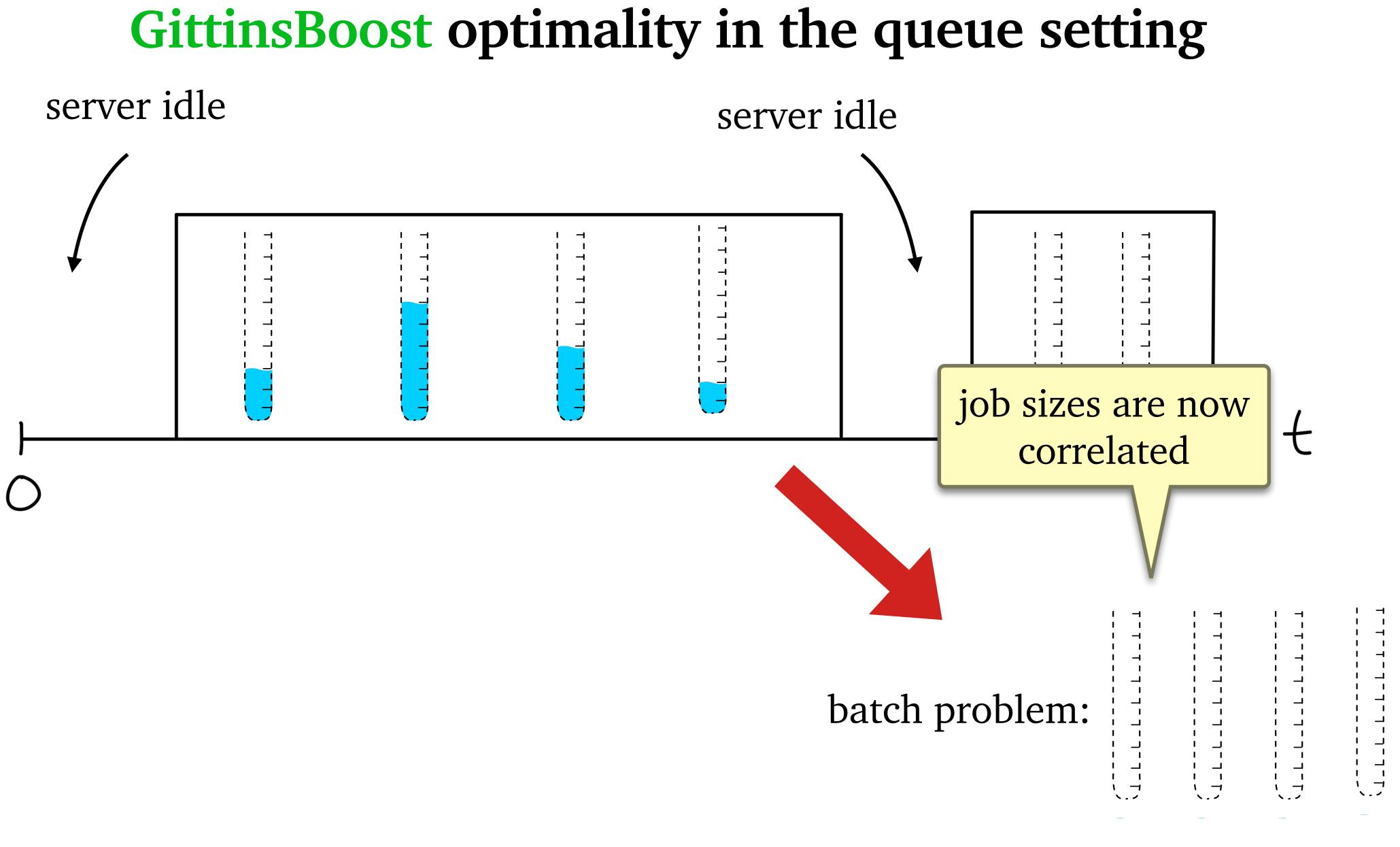
GittinsBoost optimality in the queue setting

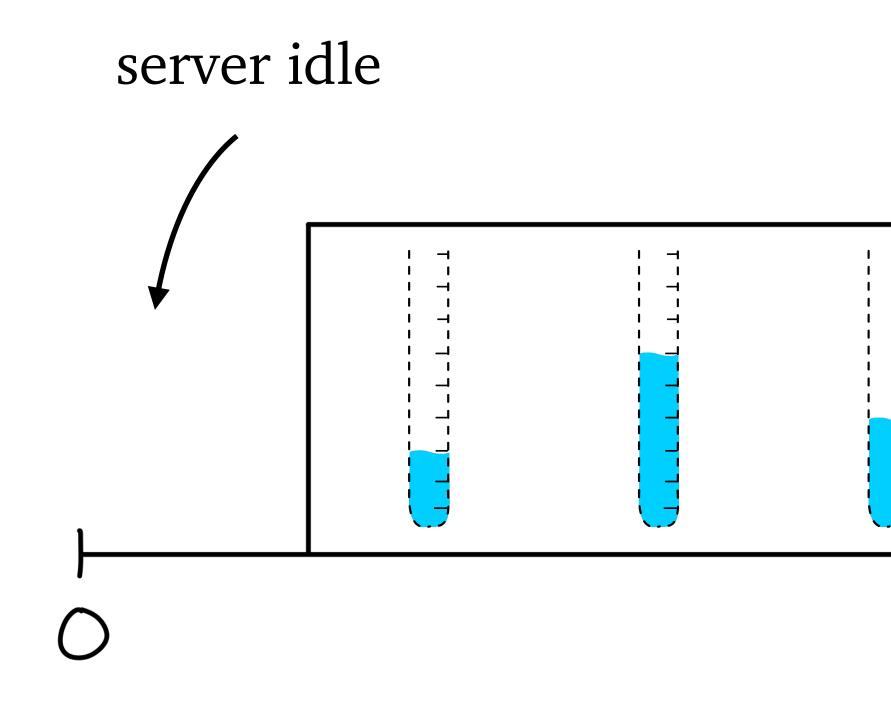
GittinsBoost optimality in the queue setting server idle

server idle

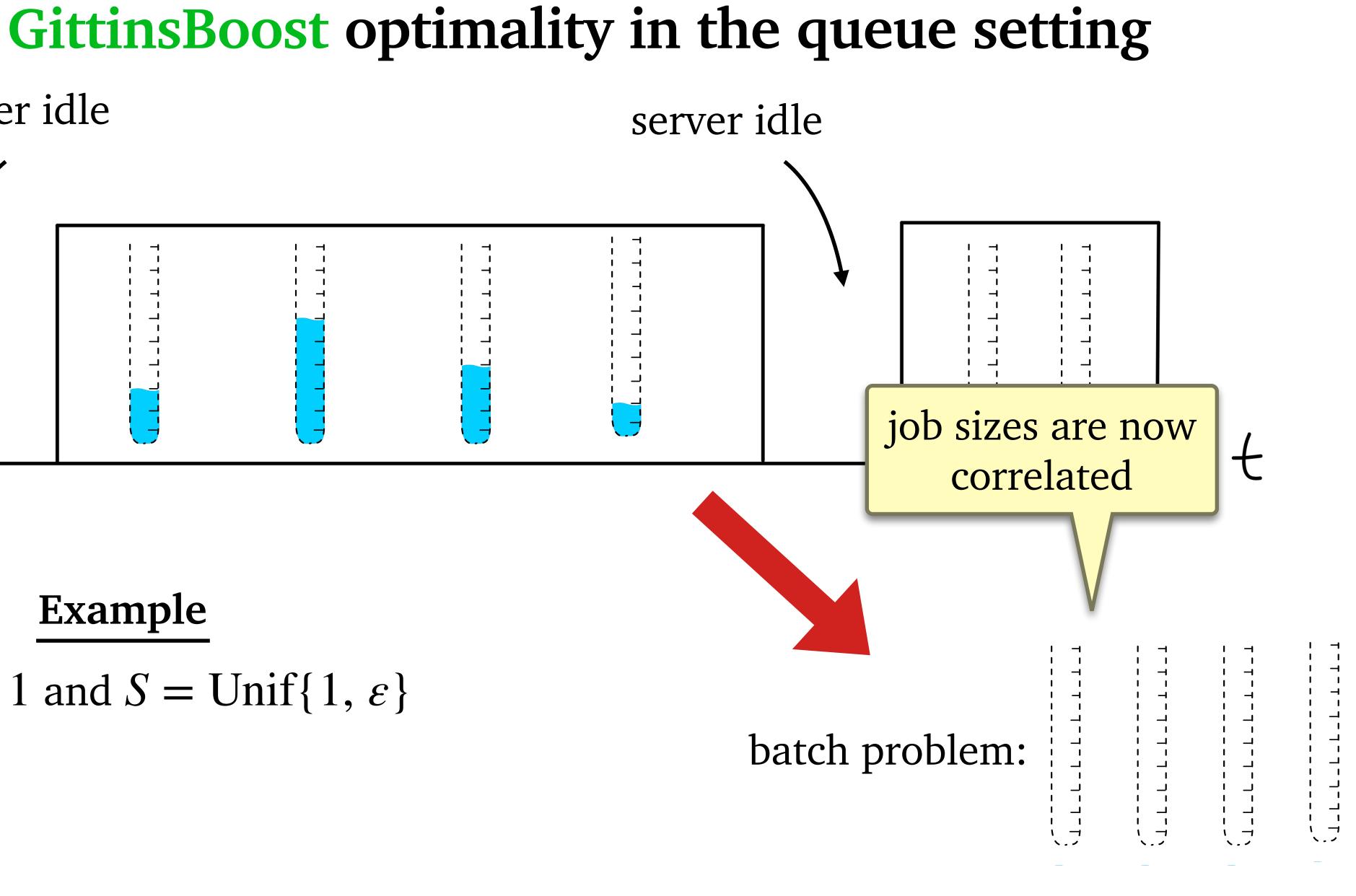


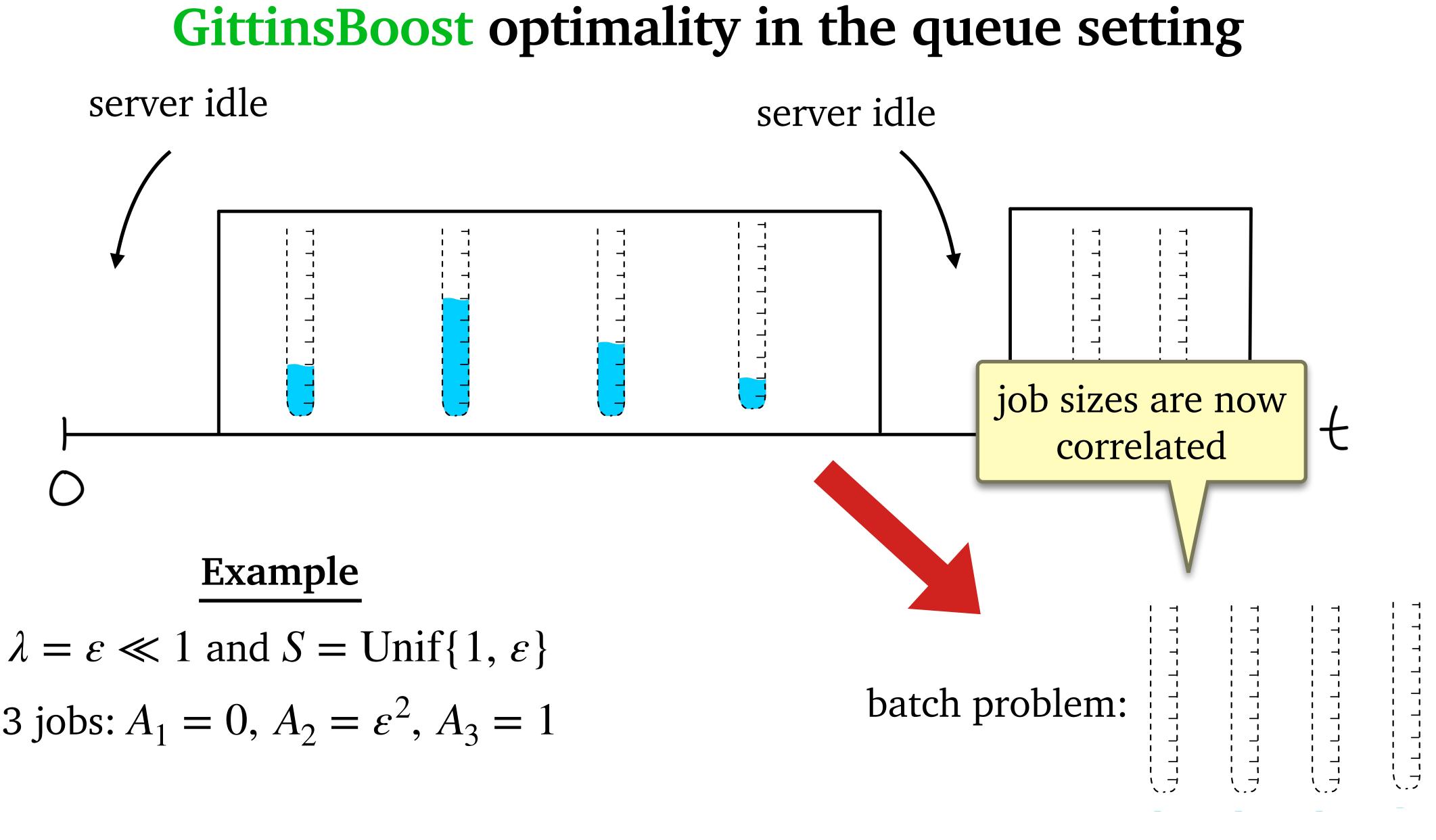




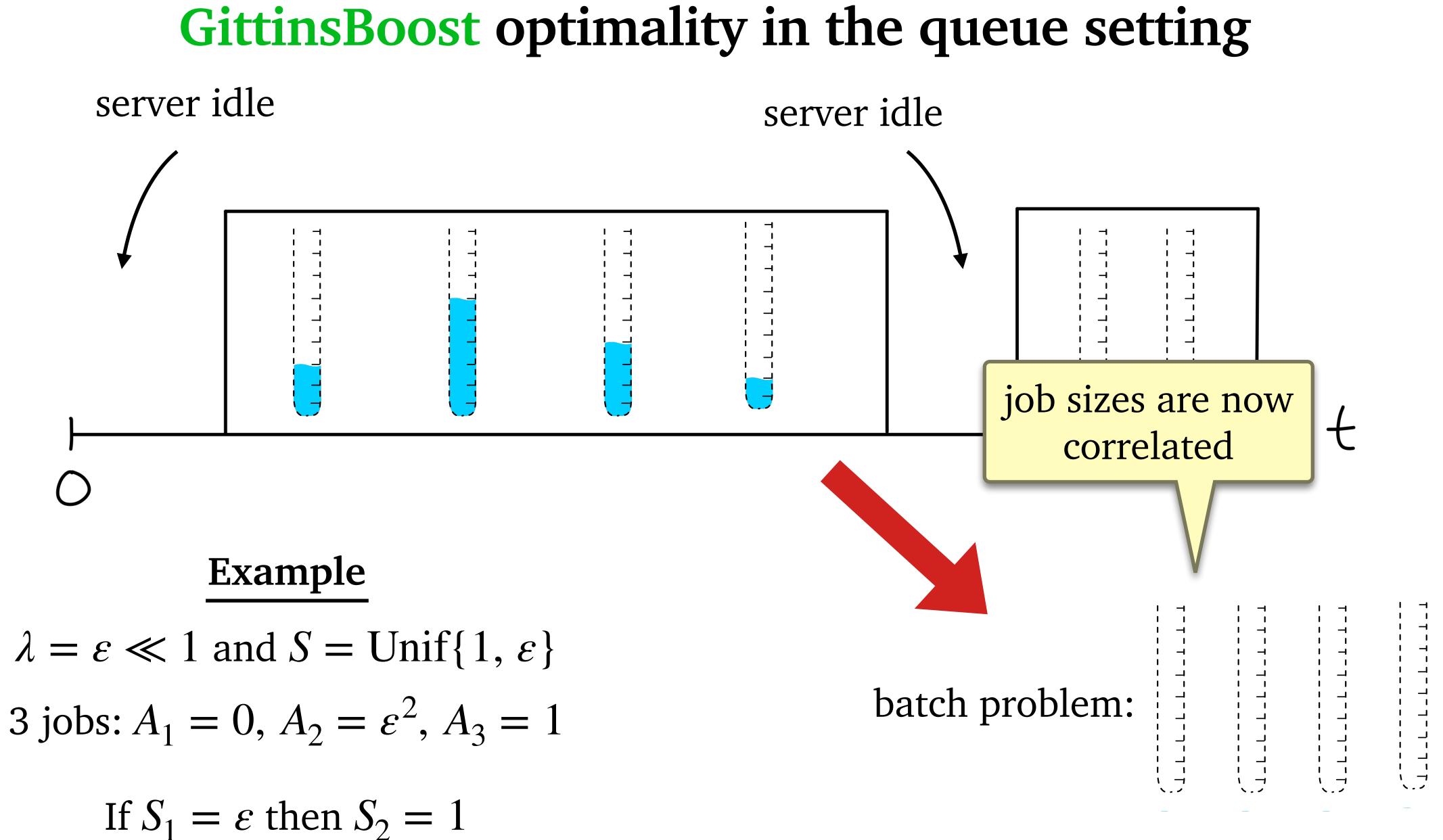


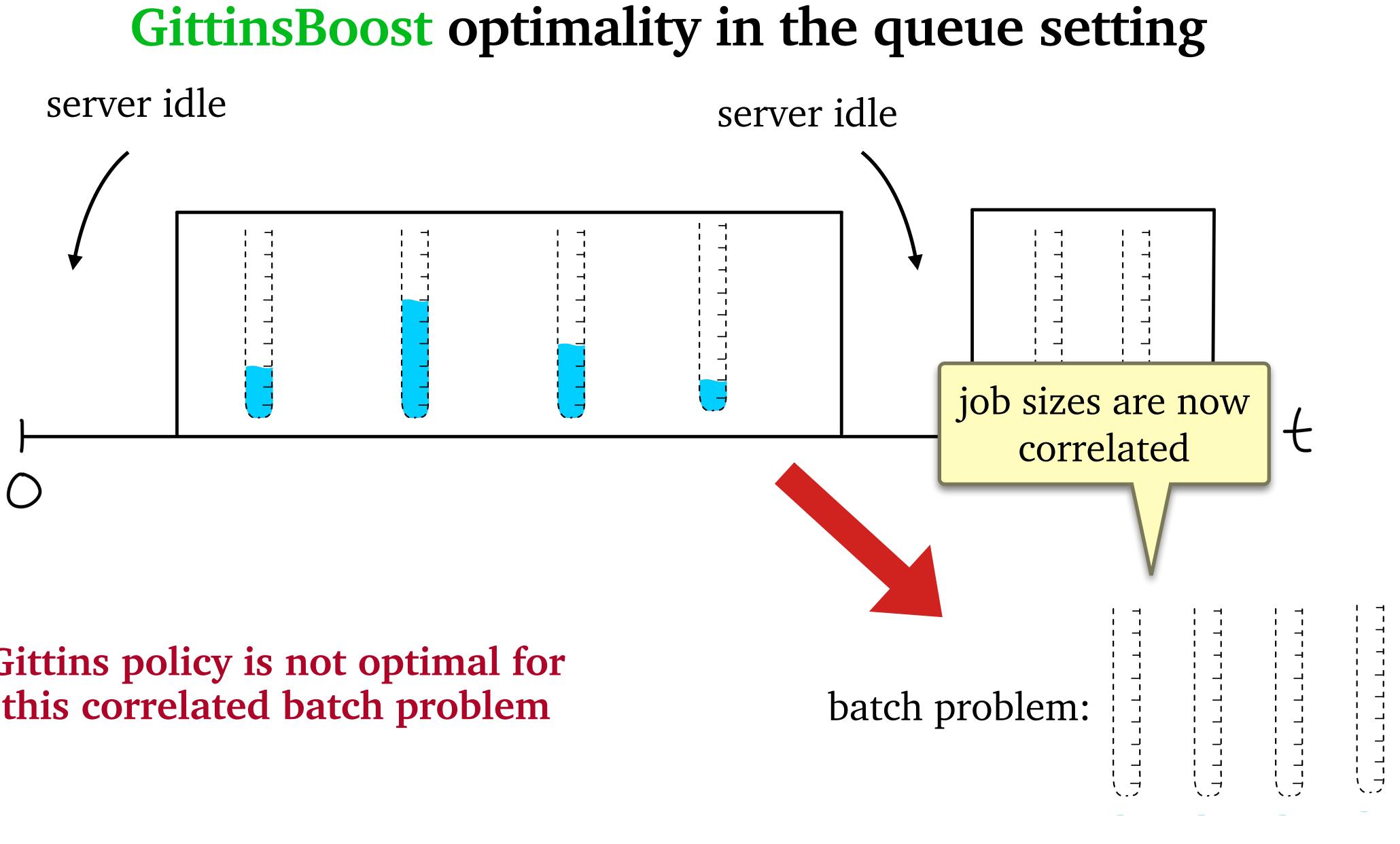
Example $\lambda = \varepsilon \ll 1$ and $S = \text{Unif}\{1, \varepsilon\}$



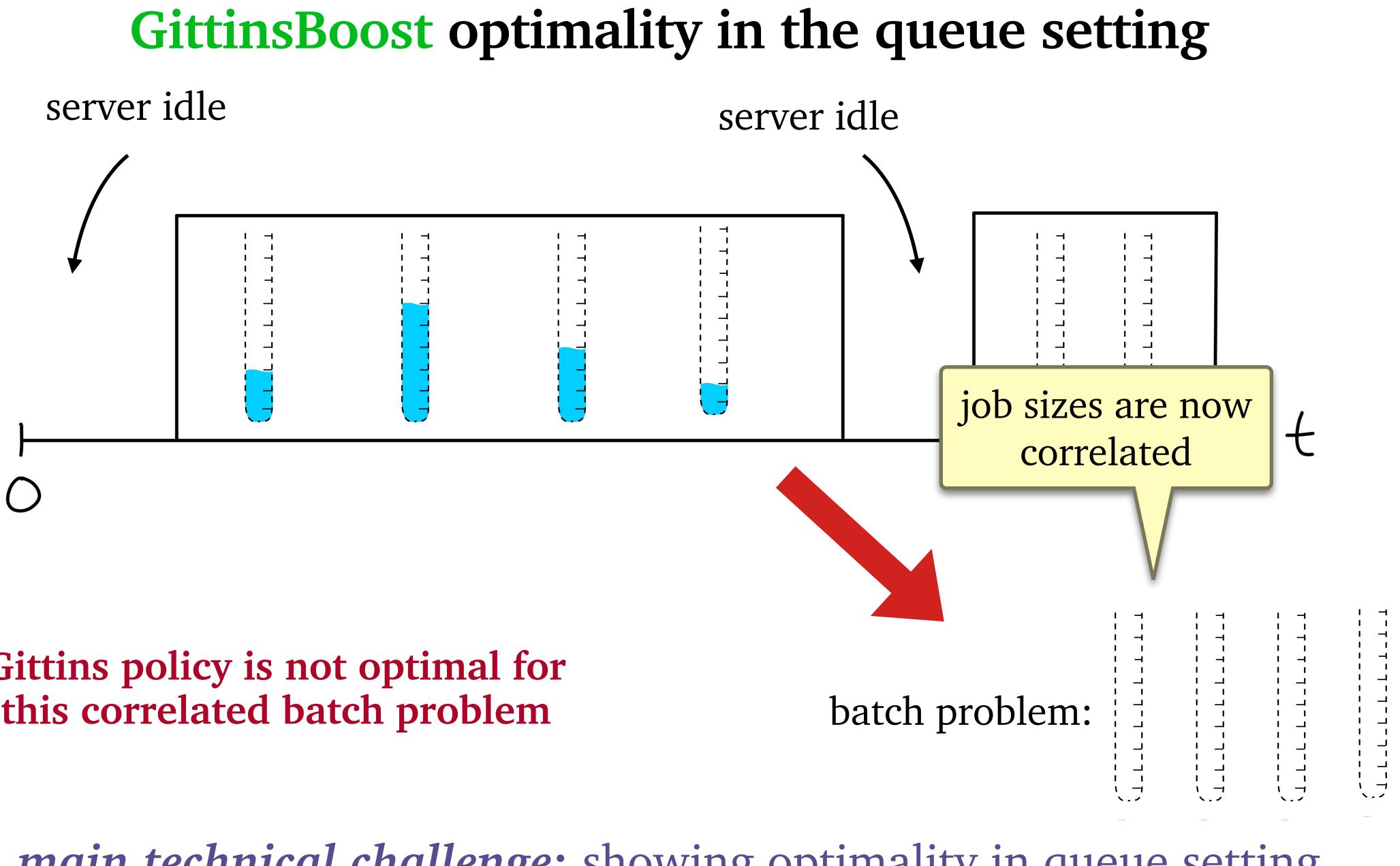


3 jobs: $A_1 = 0, A_2 = \varepsilon^2, A_3 = 1$



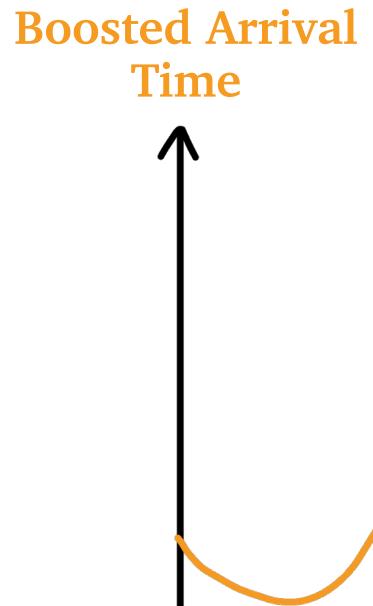


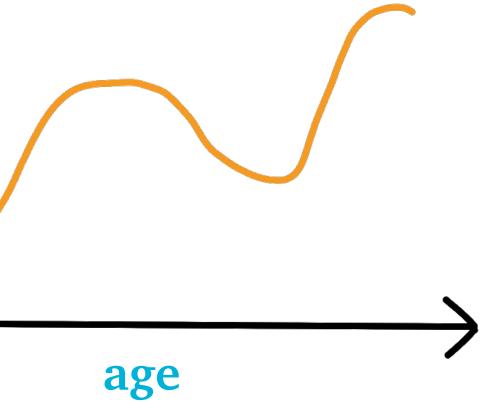
Gittins policy is not optimal for this correlated batch problem

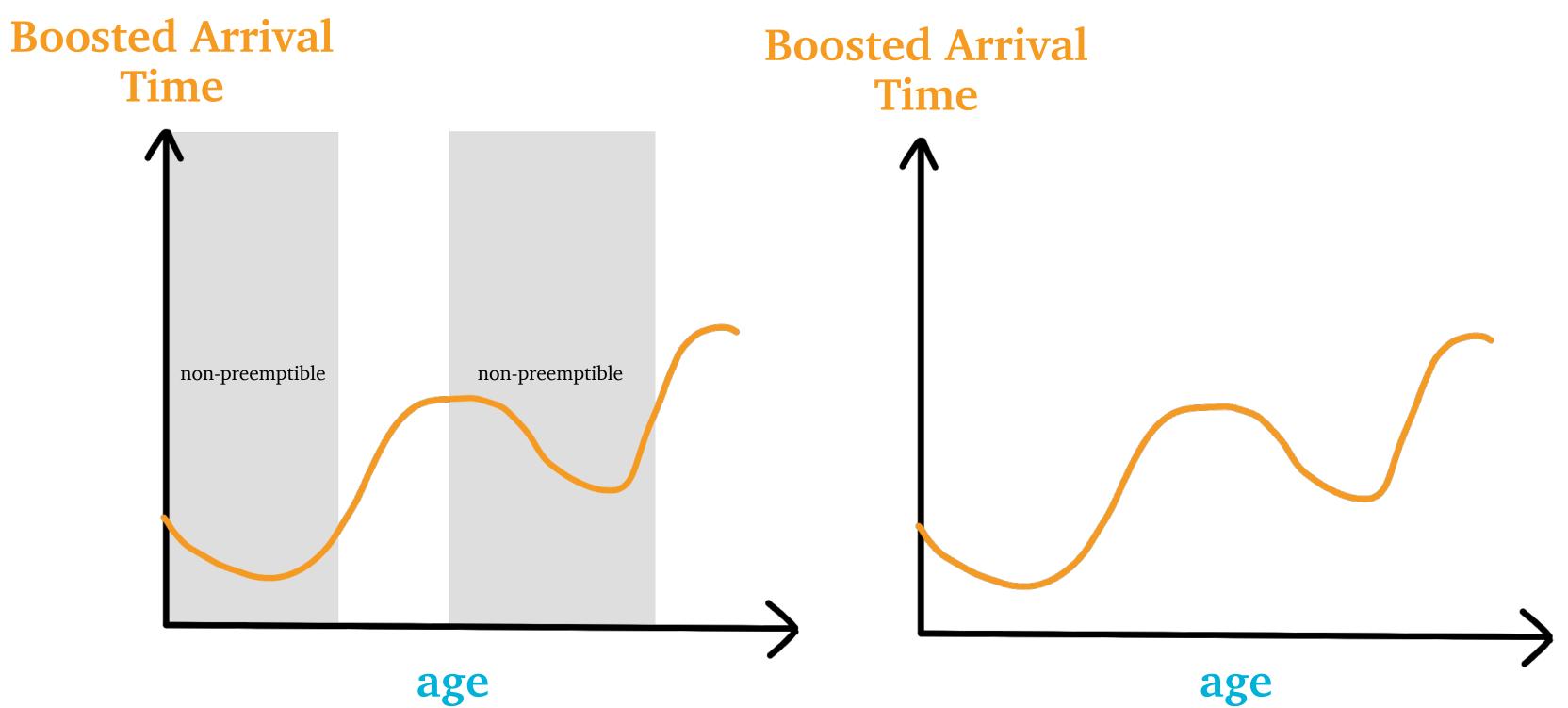


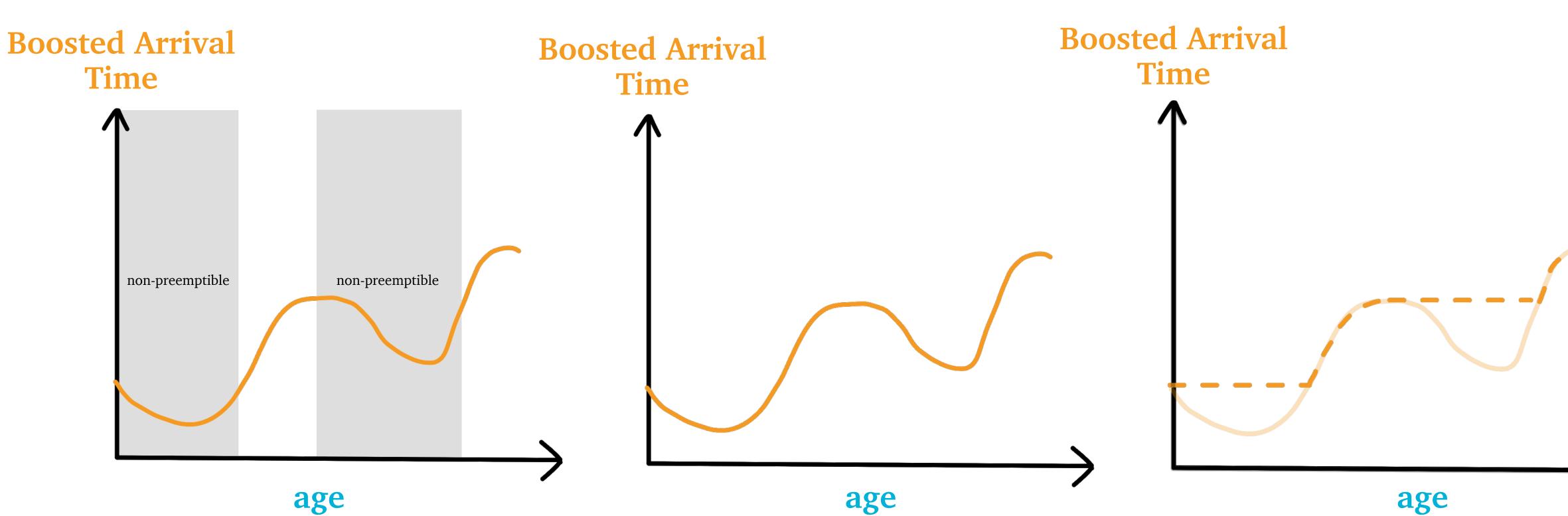
Gittins policy is not optimal for this correlated batch problem

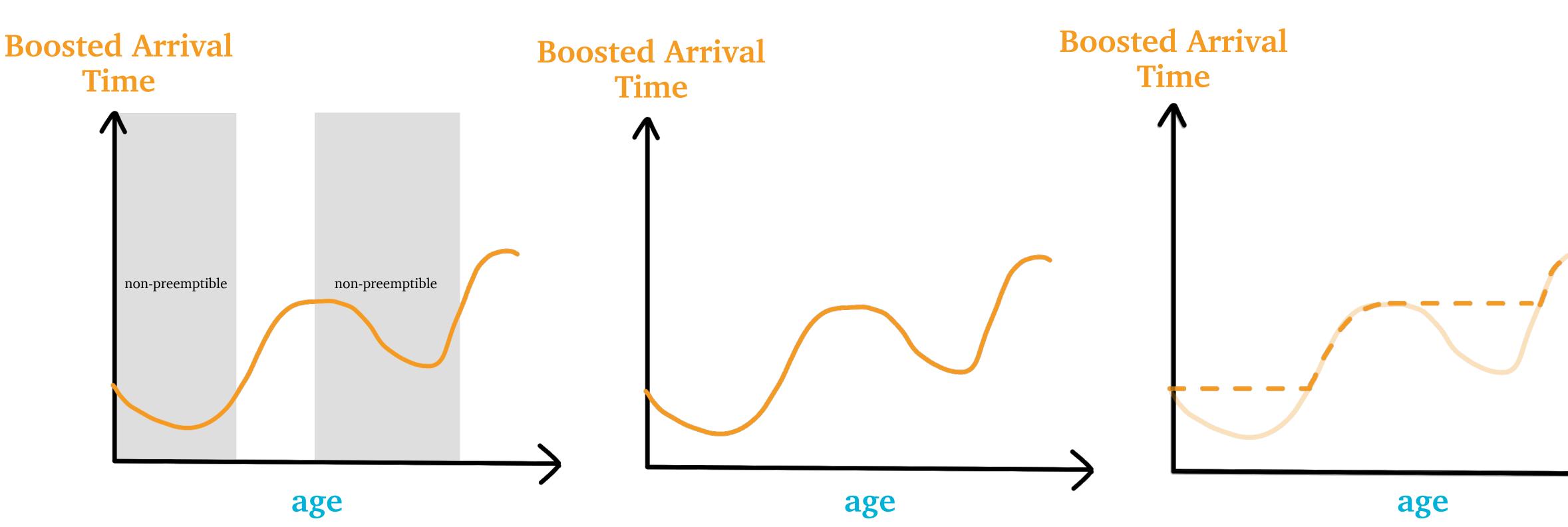
main technical challenge: showing optimality in queue setting



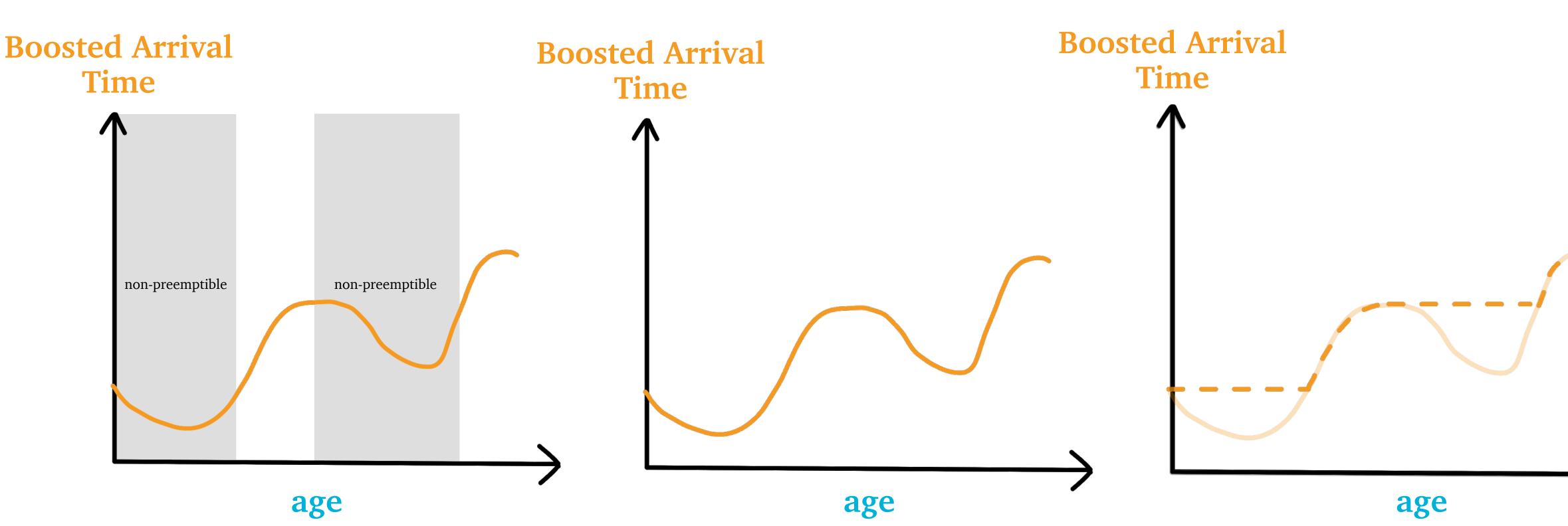








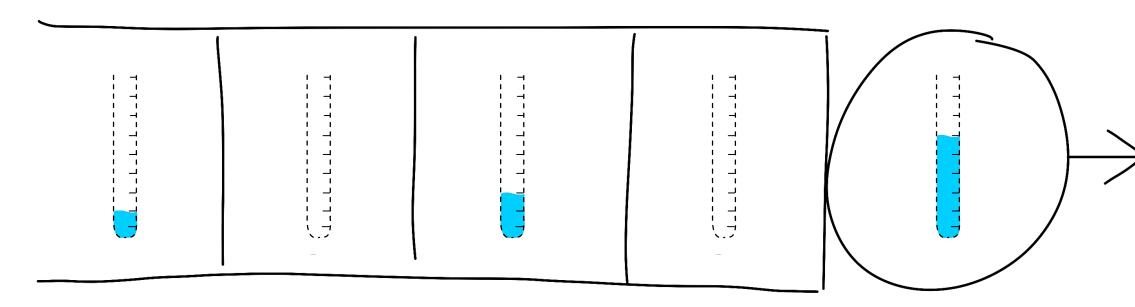
Batch Setting Optimality: all three policies are the same



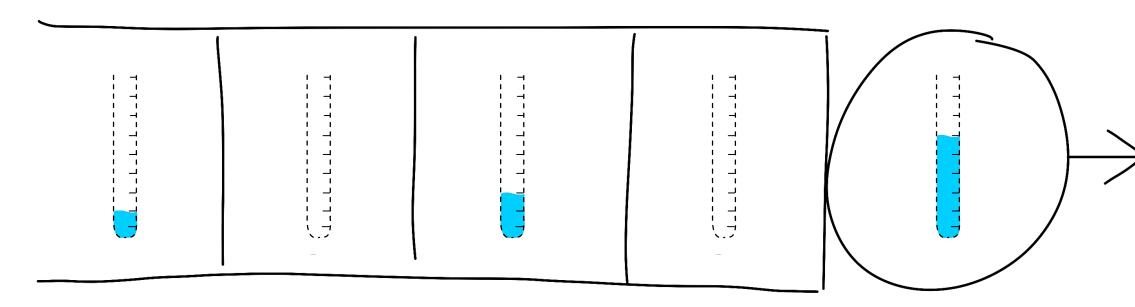
Queue Setting Optimality: all three policies have the same asymptotic tail behavior

What was our approach?

Batch Setting Optimality: all three policies are the same

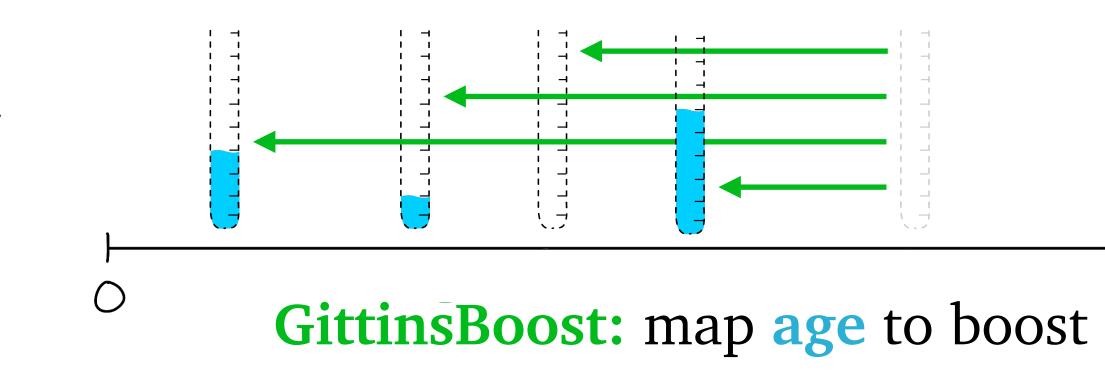


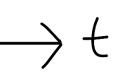
Schedule for $\mathbf{P}[T > t]$ as $t \to \infty$

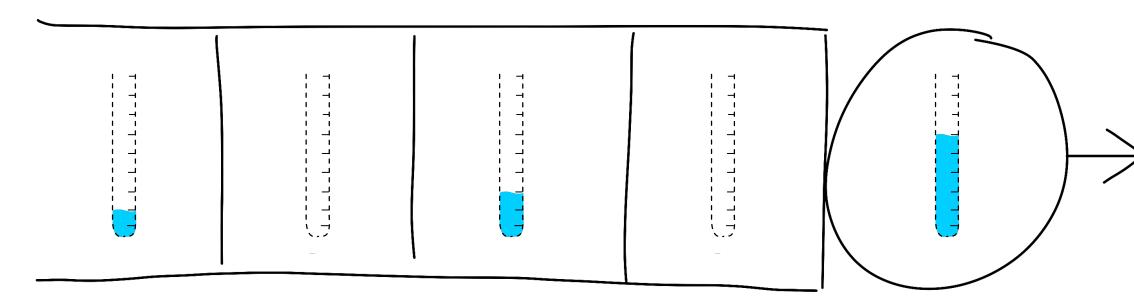


Schedule for $\mathbf{P}[T > t]$ as $t \to \infty$

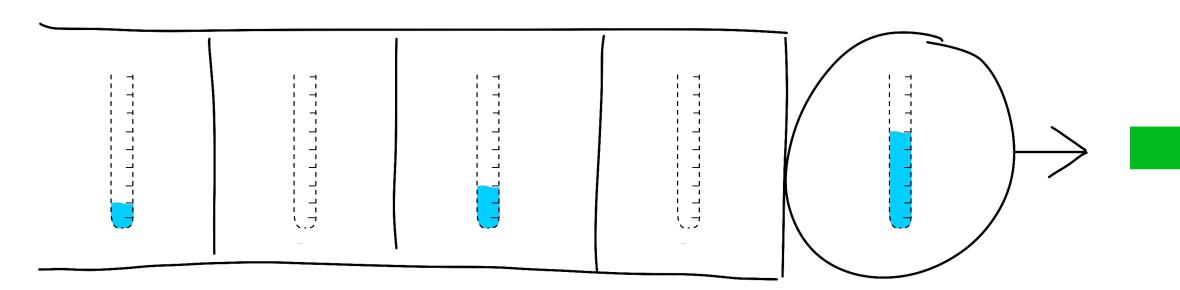
Contribution



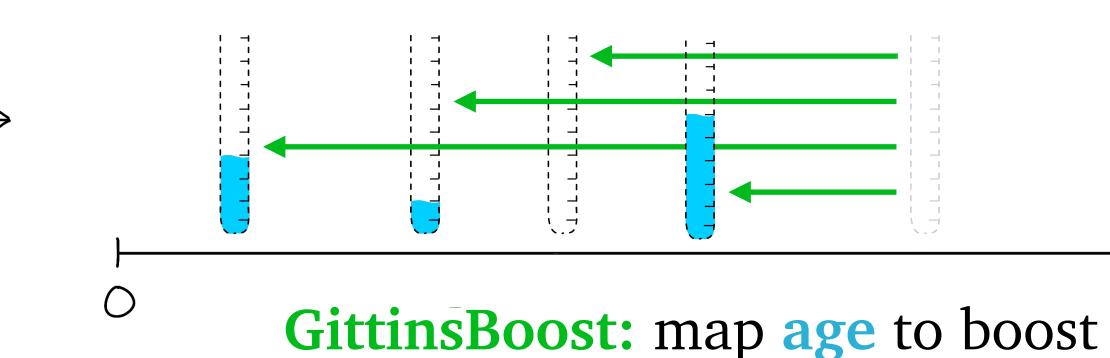




Schedule for $\mathbf{P}[T > t]$ as $t \to \infty$

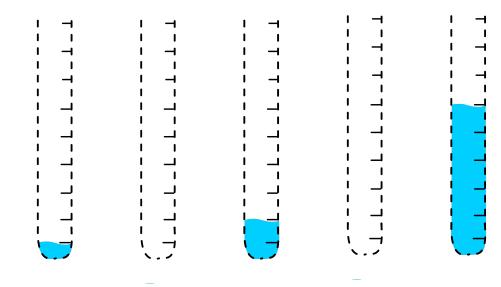


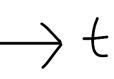
Contribution

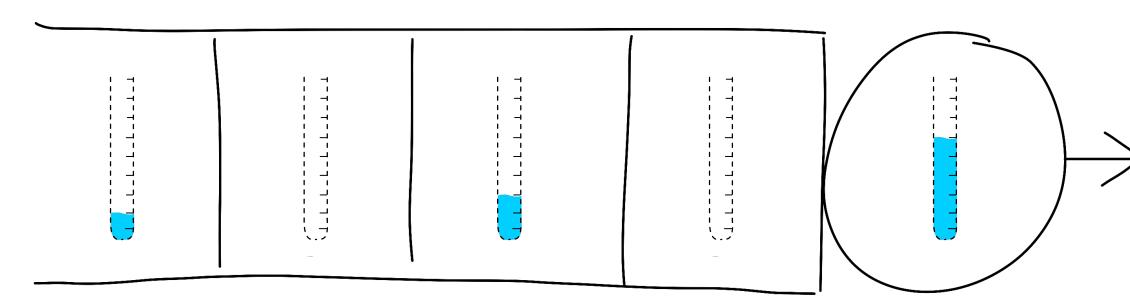


Main Ideas

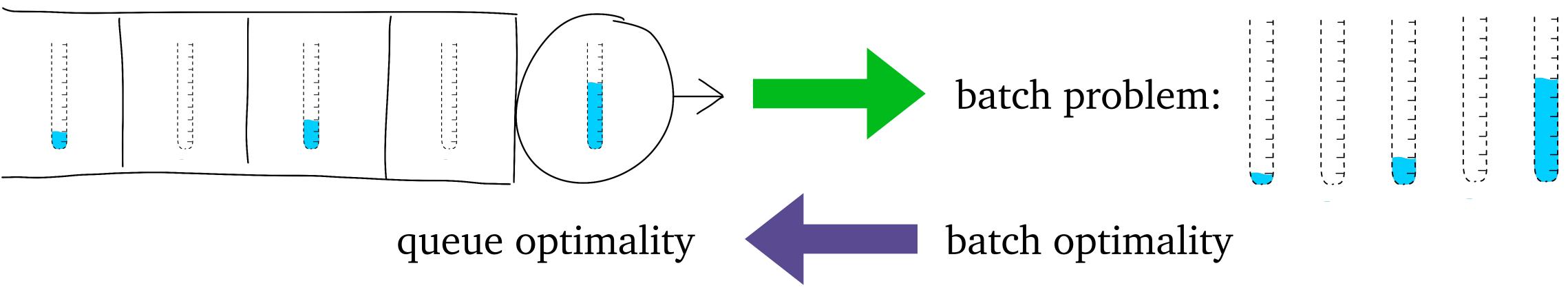
batch problem:



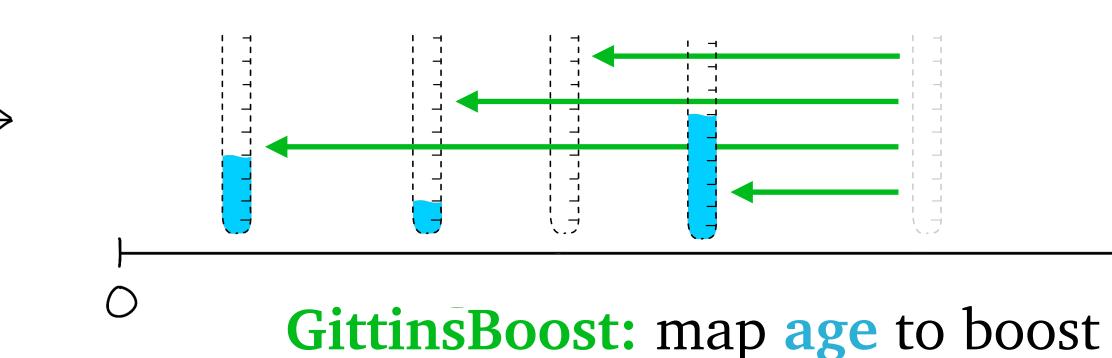




Schedule for $\mathbf{P}[T > t]$ as $t \to \infty$



Contribution



Main Ideas

main technical challenge

