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results in strongly optimal policy (Yu & Scully, 2024)

b(s) =
1
γ

log
1

1 − e−γs

Which boost function minimizes asymptotic tail latency?
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All of these are in the Gittins family of policies!
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w1 w2 w3 w4 w5 w6 w7

(β > 0)
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What is the Gittins family of policies?

w1 w2 w3 w4 w5 w6 w7

(β > 0)

Gittins policies solve the family of batch problems:

with objective:

“ ”(β = 0)

or minimize  Eπ[
N

∑
i=1

e−βDi wi]or

(β < 0)

discounting negative discounting = inflation

job sizes independent

cost at completion

minimize  Eπ[
N

∑
i=1

e−βDi wi] minimize  Eπ[
N

∑
i=1

Di wi]
new-ish!
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w1 w2 w3 w4 w5 w6 w7

(β > 0)
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All of these are in the Gittins family of policies!
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Boost GittinsBoost

All of these are in the Gittins family of policies!

How do we show optimality in the queue setting?
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server idleserver idle

batch problem:

Example

GittinsBoost optimality in the queue setting

job sizes are now 
correlated

3 jobs: A1 = 0, A2 = ε2, A3 = 1
 and λ = ε ≪ 1 S = Unif{1, ε}
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server idleserver idle

batch problem:

Example

3 jobs: A1 = 0, A2 = ε2, A3 = 1
 and λ = ε ≪ 1 S = Unif{1, ε}

If  then S1 = ε S2 = 1

GittinsBoost optimality in the queue setting

job sizes are now 
correlated
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server idleserver idle

batch problem:
Gittins policy is not optimal for 
this correlated batch problem

GittinsBoost optimality in the queue setting

job sizes are now 
correlated
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GittinsBoost optimality in the queue setting
server idleserver idle

batch problem:

main technical challenge: showing optimality in queue setting 

job sizes are now 
correlated

Gittins policy is not optimal for 
this correlated batch problem
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What was our approach?

non-preemptible non-preemptible

Boosted Arrival 
Time

Boosted Arrival 
Time

Boosted Arrival 
Time

age age age

Batch Setting Optimality: all three policies are the same

Queue Setting Optimality: all three policies have the same asymptotic tail behavior
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Summary

Problem

Schedule for   as  P[T > t] t → ∞

Contribution

GittinsBoost: map age to boost

main technical challenge

batch optimality

Main Ideas

queue optimality

batch problem:


