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matter
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Boost: a way to balance this tradeoff!
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Boost serves jobs in order of ascending boosted arrival time:

boosted arrival time = arrival time - boost

boost is determined by boost function b(s) > 0 that maps job size to boost.

Which boost function minimizes asymptotic tail latency?

choosing:

results in strongly optimal policy (Yu & Scully, 2024)
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The GittinsBoost policy

defined by a boost function b(x) > 0 that maps age to boost

Which boost function is optimal?

looks similar to the

choosing: Gittins rank function...
1 E[e”1(S<y)|S > x]
b(x) = —log | sup
r o\ ey E[e7GW=9 1§ > x]

gets us a strongly optimal policy in the class of policies that don’t use job size information.
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w/ known sizes w/ unknown sizes w/ known sizes
Optimal

Policy

SRPT

Gittins
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What is the optimal policy for the batch problem?

Queue E [T] E [T] tlim P[T > 1]
. . —> 0 . . .
ObJ ective w/ known sizes w/ unknown sizes w/ kn sizes a key insight in the
Boost paper
N - N _ N
D. —vA.
Batch ZDi E, ZDi Zey e
Objective i=1 =l i=1
w/ known sizes w/ unknown sizes w/ known sizes
Optimal

Policy

SRPT

Gittins
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What is the optimal policy for the batch problem?

Queue E [T] E [T] tlim P[T > 1]
. . —> 0 . . .
ObJ ective w/ known sizes w/ unknown sizes w/ kn sizes a key insight in the
Boost paper
N - N _ N
D. —vA.
Batch ZDi E, ZDi Zey e
Objective i=1 =l i=1
w/ known sizes w/ unknown sizes w/ known sizes
Optimal

Policy

SRPT

Gittins

Boost
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What is the optimal policy for the batch problem?

. . [— 00 [— 00
ObJ ective w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
N - N _ N
D. —vA.
Batch ZDz’ E, ZDi Zey e
Objective i=1 =l i=1
w/ known sizes w/ unknown sizes w/ known sizes
Optimal

Policy

SRPT

Gittins

Boost
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What is the optimal policy for the batch problem?

Queue Eﬂ[T] EE[T] Iim P[T > t] Iim P[T > t]
. . [— 00 [— 00
ObJ ective w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
N = N _ N - N _
Batch Z Di EJZ Z Di Z e}’Di e_}’Ai E]t Z e}/Di e —YA,;
Objective i=1 L=l i=1 Ci=1 '
w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
Optimal

Policy

SRPT

Gittins

Boost
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What is the optimal policy for the batch problem?

Queue Eﬂ[T] Eﬂ[T] Iim P[T > t] Iim P[T > t]
. . [— 00 [— 00
ObJ ective w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
N = N _ N - N _
Batch Z Di EJZ Z Di Z e}’Di e_}’Ai E]t Z e}/Di e —YA,;
Objective i=1 L=l i=1 Ci=1 '
w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
Optimal

Policy

SRPT

Gittins

Boost

GittinsBoost
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What is the optimal policy for the batch problem?

Queue Eﬂ[T] EE[T] lim P[T > 1] lim P[T > ¢]
. . I— 00 I— o0
ObJ ective w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
N = N _ N = N _
Objective i=1 L=l i=1 Ci=1 '
w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
Og)otlliT;l SRPT Gittins Boost GittinsBoost

All of these are in the Gittins family of policies!




What is the Gittins family of policies?

Gittins policies solve the family of batch problems:

job sizes independent

g | | 1

vl L_L_L_L_L_l_1_1
vl L_L_L_L_L_l_1_1
vl L_L_L_L_L_l_1_1

g | 1 1 | | l
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What is the Gittins family of policies?

Gittins policies solve the family of batch problems:
\_ 5 : \_
\J

job sizes independent
Wi Wy W3 Wy W5 We Wy

\—\f_J

cost at completion

_L_L_L_L_L_L_1_1
l_L_L_L_L_L_L_1_1
_L_L_L_L_L_L_1_1
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What is the Gittins family of policies?

Gittins policies solve the family of batch problems:
\_ 5 : \_
\J

job sizes independent
Wi Wy W3 Wy W5 We Wy
with objective: . .
N

cost at completion
minimize E”l Z e PP wi]

=1

(h > 0)

_L_L_L_L_L_L_1_1
l_L_L_L_L_L_L_1_1
_L_L_L_L_L_L_1_1
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What is the Gittins family of policies?

Gittins policies solve the family of batch problems:
\_ 5 : \_
\J

job sizes independent
Wi Wy W3 Wy W5 We Wy
with objective: . .
N N

cost at completion
minimize Eﬂ[ ) e w,.] or minimize Eﬂ[ ) D, wi]
=1 =1

F>0) “p =0y

_L_L_L_L_L_L_1_1
l_L_L_L_L_L_L_1_1
_L_L_L_L_L_L_1_1
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What is the Gittins family of policies?

Gittins policies solve the family of batch problems:
\_ 5 : \_
\J

job sizes independent
Wi Wy W3 Wy W5 We Wy

\—\f_J

cost at completion

with objective: . .
N N N

minimize E”l Z e PD; Wi] or Mminimize E”l Z D, wi] or Mminimize E”l Z e PP; wl-]

=1 =1 =1
(B> 0) (B =0y F<0)

_L_L_L_L_L_L_1_1
l_L_L_L_L_L_L_1_1
_L_L_L_L_L_L_1_1
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What is the Gittins family of policies?

Gittins policies solve the family of batch problems:

_L_L_L_L_L_L_1_1
l_L_L_L_L_L_L_1_1
_L_L_L_L_L_L_1_1

R ERENCEE R
job sizes independent
Wi Wy W3 Wy W5 We Wy
b\f_#

cost at completion

with objective: — . . .
negative discounting = inflation
N N N

minimize E”l Z e PD; Wi] or Mminimize E”l Z D, wi] or Mminimize E”l Z e PP; wl-]

=1 =1 =1
(B> 0) (B =0y F<0)
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What is the Gittins family of policies?

Gittins policies solve the family of batch problems:

_L_L_L_L_L_L_1_1
l_L_L_L_L_L_L_1_1
_L_L_L_L_L_L_1_1

R ERENCEE R
job sizes independent
Wi Wy W3 Wy W5 We Wy
b\f_#

cost at completion

with objective:
: : D. —vA.
N N N

minimize E”l Z e PD; Wi] or Mminimize E”l Z D, wi] or Mminimize E”l Z e PP; wl-]

=1 =1 =1
(B> 0) (B =0y F<0)
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What is the optimal policy for the batch problem?

Queue Eﬂ[T] EE[T] lim P[T > 1] lim P[T > ¢]
. . I— 00 I— o0
ObJ ective w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
N = N _ N = N _
Objective i=1 L=l i=1 Ci=1 '
w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
Og)otlliT;l SRPT Gittins Boost GittinsBoost

All of these are in the Gittins family of policies!




What is the optimal policy for the batch problem?

Queue Eﬂ[T] EE[T] lim P[T > 1] lim P[T > ¢]
. . I— 00 I— o0
ObJ ective w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
N = N _ N = N _
Objective i=1 L=l i=1 Ci=1 '
w/ known sizes w/ unknown sizes w/ known sizes w/ unknown sizes
01%1111?;1 SRPT Gittins Boost GittinsBoost

All of these are in the Gittins family of policies!

How do we show optimality in the queue setting?
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Boost optimality in the queue setting

server idle server idle

busy period
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Boost optimality in the queue setting

server idle server idle

\

busy period

batch problem: | -
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GittinsBoost optimality in the queue setting
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GittinsBoost optimality in the queue setting

server idle server idle

/ \
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GittinsBoost optimality in the queue setting

server idle server idle

/ \

1
-L_1_1_1
1
1

batch problem:

l_L_L_L_L_L
l_L_L_L_L_L
\l_L_L_L_L_L_L_1_
l_L_L_L_L_L
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GittinsBoost optimality in the queue setting

server idle server idle

/ \

job sizes are now L
correlated

-4

1
-L_1_1_1
1
-L_1_1

batch problem:

\l_L_L_L_L_L_1L_
l_L_L_L_L_L
l_L_L_L_L_L

“l_L_L_L_L_L
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GittinsBoost optimality in the queue setting

server idle server idle

/ \

O

job sizes are now L
correlated

Example

A=¢e<]and § = Unmif{1, &}

1
-L_1_1_1
1
1

batch problem:

\l_L_L_L_L_L_L_1_
l_L_L_L_L_L

\l_L_L_L_L_L_L_1_
l_L_L_L_L_L
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GittinsBoost optimality in the queue setting

server idle server idle

/ \

O

job sizes are now L
correlated

Example
A=¢e<]and § = Unmif{1, &} .
3jobs: A, = 0, A, = 2 Ay =1 batch problem:

1
- L_1_1_1
1

l_L_L_L_L_L
l_L_L_L_L_L
\l_L_L_L_L_L_L_1_
l_L_L_L_L_L
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GittinsBoost optimality in the queue setting

server idle server idle

/ \

job sizes are now L

correlated
O
Example !
J=¢<1and S = Unif{l, ¢ EREERNERNE
3jobs:A; =0, A, = 82’ Ay =1 batch problem:

IfS, =¢ethen$, =1
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GittinsBoost optimality in the queue setting

server idle server idle

/ \

O

job sizes are now L
correlated

1
-1l_1_1
1

Gittins policy is not optimal for .
this correlated batch problem batch problem: : :

l_L_L_L_L_L
“l_L_L_L_L_L
\l_L_L_L_L_L_L_1_
l_L_L_L_L_L
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GittinsBoost optimality in the queue setting

server idle server idle

/ \

job sizes are now L

correlated
O
Gittins policy is not optimal for I A A
this correlated batch problem batch problem: : : TR

l_L_L_L_L_L
vl L_L_L_L_L

main technical challenge: showing optimality in queue setting
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What was our approach?

age
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non-preemptible

non-preemptible

age

What was our approach?

age
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non-preemptible

non-preemptible

age

What was our approach?

age

age
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What was our approach?

non-preemptible non-preemptible

N N

age age age

Batch Setting Optimality: all three policies are the same
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What was our approach?

non-preemptible non-preemptible

N N

age age age
Batch Setting Optimality: all three policies are the same

Queue Setting Optimality: all three policies have the same asymptotic tail behavior
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Summary
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Summary

Problem

Schedule for P|T > t] as t - o
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Summary

Problem Contribution
] - e
; - - o

Schedule for P|T > t] as t — oo GittinsBoost: map age to boost
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Summary

Problem Contribution

Schedule for P|T > t] as t — oo GittinsBoost: map age to boost

Main Ideas

# batch problem:

VIl L_L_L_L_L_L_1l_1

.L_L_L_L_L_.I._.L_.I.

I_L_L_L-L-L-.L-.I._.L

| /—________________
vJl_L_L_L_L_L_1_1_1

153



Summary

Problem Contribution

Schedule for P|T > t] as t — oo GittinsBoost: map age to boost

Main Ideas

# batch problem:

VIl L_L_L_L_L_L_1l_1

.L_L_L_L_L_.I._.L_.I.

I_L_L_L-L-L-.L-.I._.L

| /—________________
vJl_L_L_L_L_L_1_1_1

queue optimality h batch optimality

main technical challenge
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