
A Gittins Policy for Optimizing Tail Latency

Amit Harlev∗

Cornell University
ah843@cornell.edu

George Yu∗

Cornell University
gy45@cornell.edu

Ziv Scully
Cornell University

zivscully@cornell.edu

1. INTRODUCTION
Service level objectives (SLOs) for queueing systems typically
relate to the tail of the system’s response time distribution T .
The tail is the function mapping a time t to the probability
P[T > t]. SLOs typically ask that high percentiles of T are
not too large, i.e. that P[T > t] is small for large t.

Motivated by the problem of optimizing SLOs in settings
where job sizes are often unknown, we look at the problem of
asymptotically minimizing P[T > t] in the t → ∞ limit with
unknown job sizes. For light-tailed job size distributions, this
problem was open for some time [8], until recent work [9]
developed an optimal policy for known sizes. In this paper,
we study the M/G/1 with unknown sizes. We propose a
new (Gittins) index policy, and prove it has asymptotically
optimal response time tail among all policies that schedule
without job size information.

1.1 Background on tail optimality
To understand what it means to optimize the response time
tail, we first define the notion of asymptotic optimality. Con-
sider an M/G/1 setting with job size distribution S. Let Tπ

denote the response time distribution under a scheduling
policy π. We say that a policy π is weakly tail-optimal if
there exists a constant c > 0 such that,

sup
π′

lim sup
t→∞

P[Tπ > t]

P[Tπ′ > t]
≤ c.

We further say π is strongly tail-optimal if c = 1. In the
known-size case we take the supremum over all policies, but
in the unknown-size setting, we limit to non-clairvoyant,
age-based scheduling policies (Section 1.2). We assume a
preempt-resume model: the job in service may be paused
and resumed at a later point without loss of progress.

The asymptotic tail behavior under a policy π depends
on whether the job’s distribution is light- or heavy-tailed;
Wierman and Zwart [8] showed that a policy cannot be tail-
optimal for both heavy-tailed and light-tailed distributions.

Recent work by Yu and Scully [9, Appendix A] observes
that, for an important class of heavy-tailed distributions,
there exist many policies that are strongly tail-optimal. Sev-
eral of these policies, such as Least Attained Service and
Processor Sharing, do not use job size information, so the
problem of strong tail optimality for unknown sizes is, like
known sizes, largely solved in the heavy-tailed setting.
∗Authors contributed equally to this research.

Copyright is held by author/owner(s).

In the light-tailed setting, First-Come-First-Served (FCFS)
was the best performing policy for some time in both the
known and unknown size cases. FCFS was known to be
weakly tail-optimal and conjectured to be strongly tail-
optimal. In particular, the tail of FCFS is asymptotically
exponential for light-tailed distributions, that is,

P[TFCFS > t] ∼ CFCFS exp(−γt),

where γ is a constant called the decay rate and CFCFS is
FCFS’s tail constant. No policy has decay rate better than γ
[1, 5], so strong tail optimality amounts to minimizing

Cπ = lim
t→∞

exp(γt)P[Tπ > t].

Recently, new policies have emerged with better tail con-
stant than FCFS, disproving the conjecture that it was
strongly tail-optimal [2, 4, 6]. This line of work culminated
in a strongly tail-optimal policy, Boost, which optimizes the
tail constant for class I light-tailed distributions when job
sizes are known [9]. However, unlike in the heavy-tailed set-
ting, relying on job size information to determine which jobs
to prioritize is essential to achieving strong tail optimality.
Thus, strong tail optimality for unknown job sizes in the
light-tailed setting is still an open question. We thus ask:

In the light-tailed M/G/1 with unknown job sizes,
what age-based scheduling policy minimizes the
tail constant Cπ?

1.2 How much preemption is too much?
We must first understand how size-based scheduling differs
from age-based scheduling. With size-based scheduling, pre-
emption is unnecessary: both preemptive and non-preemptive
Boost have identical tail constants [9]. In the unknown-size
setting, we cannot schedule based on size, but instead must
schedule based on a job’s attained service, i.e. its age. In this
setting, preemption is required to do any better than FCFS,
because our only tool for age-based scheduling is to preempt
jobs we believe to be large.

To optimize the tail, we wish to use age information to
prioritize jobs believed to be small, without overly delaying
jobs we believe to be large. Just as the Gittins policy is
the age-based generalization of SRPT for minimizing mean
response time, we wish to find an an analogous age-based
generalization of Boost that optimizes the tail in the un-
known size setting. Since Boost uses arrival time and size
information, we ask: can we construct a variant of Boost that
uses age and arrival time instead of size and arrival time?

In this work, we show that doing so yields a strongly tail-
optimal policy. Specifically, we introduce a novel variant of
the Gittins index policy that incorporates arrival time and



job age information, and prove its optimality in the M/G/1
with light-tailed job size distribution and unknown job sizes.

Formally, we consider the setting of the M/G/1 queue with
arrival rate λ, job size distribution S, and load ρ = λE[S],
where we take ρ < 1 so that the system is stable. We as-
sume that S is light-tailed, specifically that it is a class I
distribution [9, Definition 2.1].

2. PRIOR WORK ON BOOST POLICIES
The policy that achieves strong-tail optimality in the known-
size case belongs to the family of policies known as Boost
policies, which are introduced and analyzed in [9]. We give a
brief overview of the main ideas of [9] below, explaining how
we adapt them to unknown sizes in Section 3.

Boost policies work by assigning every job a boosted arrival
time and then serving jobs in order of increasing boosted
arrival time. A job’s boosted arrival time is given by

boosted arrival time = arrival time − boost,

where the boost of a job is given by a boost function b(s) that
maps each job size to a non-negative boost. The boost policy
that achieves strong tail optimality uses a boost function
that strikes the right balance between prioritizing short jobs
vs. prioritizing jobs that have been in system for a long time.

The key idea in [9] is to relate the problem of strong tail
optimality in the M/G/1 to a deterministic batch scheduling
problem. This idea follows from an alternative expression for
the tail constant, namely

Cπ = lim
θ→γ

γ − θ

γ
E[exp(θTπ)], (2.1)

which comes from final value theorem [4, Theorem 4.3]. Infor-
mally, (2.1) tells us that minimizing Cπ is morally equivalent
to “minimizing E[exp(γTπ)]”—even though this expectation
is infinite. This suggests the following construction:

• Instead of studying E[eγTπ ] in the queueing setting, con-
sider the problem of minimizing the sum

∑n
i=1 E[eγTπ(i)]

for a finite batch of n jobs, where Tπ(i) is the response
time of job i under π.

• View eγTπ(i) as e−γA(i)eγDπ(i), where A(i) and Dπ(i)
are a job’s arrival time (policy-invariant) and departure
time (depends on π), respectively.

• Relax the problem by allowing job i to be served prior
to its arrival time A(i).

Given a fixed set of jobs and arrival times, this process results
in a deterministic weighted batch scheduling problem with
inflation rate γ. That is, we pay e−γA(i) times an inflation
factor eγDπ(i) when job i completes at time Dπ(i). That is,
inflation is “negative discounting”. Yu and Scully [9] show
that the solution to this batch problem is a boost policy that
when applied in the queueing setting is strongly tail-optimal.

3. KEY IDEAS
We look to establish similar optimality results for unknown
sizes. Because job sizes are no longer known to the scheduler,
we consider age-based scheduling policies, asking:

(a) What is the optimal age-based scheduling policy?
(b) How do we prove its optimality?

It turns out that for (a), we can use the same overall approach
as [9], but for (b), we require a new strategy.

3.1 Finding the optimal scheduling policy
Just as in [9], we expect the optimal policy to arise from a
relaxation to a batch scheduling problem, which we construct
by following the same steps as in Section 2. Due to unknown
job sizes, the optimal policy for our resulting batch problem
is different than that of [9]. Namely, the optimal policy must
use preemption to minimize costs. While this batch problem
is similar to problems for which the Gittins policy is optimal,
there is no known optimal policy for settings with inflation
instead of discounting. We show that a variant of the Gittins
policy is optimal by adapting the proof of Weber [7].

3.2 Proving optimality
For (b), our approach differs significantly from that of [9].
Roughly speaking, [9] proves optimality in the queueing set-
ting by directly relating it to the batch setting. The idea is to
treat each busy period as a random instance of a deterministic
batch problem. With unknown sizes, setting busy periods as
batches yields random instances of stochastic batch problems
with non-independent job sizes [9, Appendix B]. Because
independence is a crucial assumption for Gittins policies [3],
the busy-period approach of [9] seems unlikely to work with
unknown sizes.

Our main technical contribution is a new approach for
(b) that proves optimality directly in the queueing setting,
without going via the batch problem. Like our approach to
the batch problem, our approach is based on Weber’s proof
[7] of the Gittins policy’s optimality, with one key difference:
our proof is “quantitiative”, rather than “qualitative”. That is,
Weber proves the Gittins policy is optimal without quantify-
ing the performance it achieves. This qualitative approach
does not work in the queueing setting for two main reasons.

The first problem is arrivals. Gittins policies are known to
not be optimal in the presence of arrivals, except for in the
special case of homogeneous Poisson arrivals [3]. While our
arrivals are Poisson, they are unfortunately not homogenous:
jobs that arrive later cost less.

The second problem is that we cannot reason directly
about inflation rate γ because E[eγTπ ] = ∞ for all policies π.
Instead, we consider policies under inflation rate θ and then
let θ → γ. Due to the mismatch between inflation rates, we
should not expect Gittins with inflation rate γ to minimize
E[eθTπ ] for any fixed θ < γ.

We get around these problems by using a quantitative
approach. Namely, we quantify the performance of both
Gittins and of a lower bound, and show that they match
at the θ → γ limit. A novel feature of our approach is the
lower bound: it is based on quantitatively analyzing the lower
bound that features in Weber’s qualitative proof.

4. THE BATCH PROBLEM
We find the optimal policy for the batch problem from Sec-
tion 3.1 by adapting the proof of Weber [7]. To recap, there
are n i.i.d. jobs with unknown sizes, each with completion
cost κi, and inflation rate θ. Let Kθ

π be the cost of a random
job under policy π. We wish to find the policy that minimizes
E[Kθ

π]. Though we only need θ = γ in Section 4, we consider
all 0 < θ ≤ γ as it is useful for Section 5.

Define the Gittins index, νθ
i (x), of job i at age x to be,

ζθ(x) = sup
y>x

θE[eθS1(S ≤ y) | S > x]

E[eθ(S∧y) − 1 | S > x]
, νθ

i (x) = κi · ζθ(x).



Similarly, define the surrogate cost of job i at age x to be
κi · inf0≤t≤x ζ(x). Let Lθ

π represent the cost you would accrue
from serving a random job (following policy π) if instead of
paying each job’s completion cost, you continuously pay a
job’s surrogate cost while it is in service. Just as in [7], our
surrogate costs satisfy the following property.

Lemma 4.1. In the batch setting,
(a) E[Kθ

π] ≥ E[Lθ
π] for any policy π.

(b) E[Kθ
π] = E[Lθ

π] for any insulated policy π.

A policy is insulated if, under that policy, a job never
leaves service on an interval where its surrogate cost is con-
stant. Let θ-Gittins denote the policy which always serves
the job with greatest Gittins index νθ

i (x). Serving the job
with greatest Gittins index is equivalent to serving the job
with greatest surrogate cost, which means that θ-Gittins is
insulated and pays surrogate costs in decreasing order. Since
there is inflation, this minimizes the total surrogate cost.

Lemma 4.2. In the batch setting,
(a) E[Lθ

θ-Gittins] ≤ E[Lθ
π] for any policy π.

(b) θ-Gittins is an insulated policy.

Putting everything together, we get that θ-Gittins is opti-
mal in the batch setting.

Theorem 4.3. In the batch setting, for any policy π,

E[Kθ
π] ≥ E[Kθ

θ-Gittins].

Proof. E[Kθ
π] ≥ E[Lθ

π] ≥ E[Lθ
θ-Gittins] = E[Kθ

θ-Gittins].

5. PROVING STRONG TAIL OPTIMALITY
We now prove that the γ-Gittins policy as defined in Sec-
tion 4—now with κ = e−γA where A is the arrival time
of the job—is a strongly tail-optimal boost policy. Recall
that γ-Gittins is the policy that serves the job with greatest
Gittins index νγ

i (x), and observe that γ-Gittins is indeed
an age-based boost policy—the policy with boost function
b(x) = − 1

γ
log ζ(x) will always serve the job of greatest Git-

tins index νγ
i (x). As noted in Section 3.2, we cannot directly

reason about the cost at inflation rate γ, so we consider the
cost of policies for inflation rate θ < γ, and then take the
θ → γ limit.

The proof begins as in the batch setting. Define fair and
surrogate costs for jobs in the queueing setting just as we
did in the batch setting. We have

Lemma 5.1. In the queueing setting,
(a) E[Kθ

π] ≥ E[Lθ
π] for any policy π.

(b) E[Kθ
π] = E[Lθ

π] for any insulated policy π.

Unfortunately, the remainder of the proof does not immedi-
ately extend to the queueing setting. The primary difference
is that with arrivals, serving the job with greatest Gittins
index is no longer equivalent to serving the job with greatest
surrogate cost, and neither of these results in an insulated
policy. Therefore, we now have three variants of our policy,

(1) θ-Gittins: serve the job with greatest Gittins index.
(2) θ-Surrogate: serve the job with greatest surrogate cost.
(3) θ-Insulated : never preempt a job on an interval where

its surrogate cost is constant, but otherwise serve the
job with greatest surrogate cost.

Note that now, θ-Surrogate minimizes the total surrogate
cost, θ-Insulated is insulated, and θ-Gittins—our policy of
interest—satisfies neither property!

Lemma 5.2. In the queueing setting,
(a) E[Lθ

θ-Surrogate] ≤ E[Lθ
π] for any policy π.

(b) θ-Insulated is an insulated policy.

Since no policy is both insulated and minimizes surrogate
costs, we cannot argue optimality as we did for Theorem 4.3.
However, we only need the optimality to hold at the θ → γ
limit, which means it is sufficient for all three policies to
perform equally at the limit, which is indeed the case. In fact,
all three policies have the same performance in both real
costs and surrogate costs. To state this rigorously we need a
“surrogate cost version” of Cπ: Dπ = limθ→γ

γ−θ
γ

E[Lθ
π]. Note

that by Lemma 5.2(a), Cπ ≥ Dπ with equality if (but not
only if) π is insulated. Thus, the following result shows that
all three policies are “asymptotically insulated”.

Lemma 5.3.
(a) Cγ-Gittins = Cγ-Surrogate = Cγ-Insulated.
(b) Dγ-Gittins = Dγ-Surrogate = Dγ-Insulated.

In fact, these are all equal since Cγ-Insulated = Dγ-Insulated.

At this point it may appear that we are done. However,
Lemma 5.2(a) does not provide the lower bound on surrogate
costs that we need. It only tells us that for all policies π,

Dπ ≥ D∗ := lim inf
θ→γ

γ − θ

γ
E[Lθ

θ-Surrogate] (5.1)

while we wished to show that

Dγ-Surrogate = lim inf
θ→γ

γ − θ

γ
E[Lθ

γ-Surrogate]

is minimal. Fortunately, simultaneously taking the limit in
both the parameter θ and the policy θ-Surrogate in (5.1)
shows that Dγ-Surrogate = D∗.

Theorem 5.4. For all policies π,

Cπ ≥ Cγ-Gittins = Cγ-Surrogate = Cγ-Insulated.

That is, all three of γ-Gittins, γ-Surrogate, and γ-Insulated
are strongly tail optimal.

References
[1] Onno J. Boxma and Bert Zwart. 2007. Tails in Scheduling.

SIGMETRICS Perform. Eval. Rev. 34, 4, 13–20.
[2] Nils Charlet and Benny Van Houdt. 2024. Tail Optimality and

Performance Analysis of the Nudge-M Scheduling Algorithm.
arXiv:2403.06588 [cs, math]

[3] John C. Gittins, Kevin D. Glazebrook, and Richard R. Weber.
2011. Multi-Armed Bandit Allocation Indices (2 ed.). Wiley,
Chichester, UK.

[4] Isaac Grosof, Kunhe Yang, Ziv Scully, and Mor Harchol-Balter.
2021. Nudge: Stochastically Improving upon FCFS. Proc. ACM
Meas. Anal. Comput. Syst. 5, 2, Article 21, 29 pages.

[5] Alexander L. Stolyar and Kavita Ramanan. 2001. Largest
Weighted Delay First Scheduling: Large Deviations and Opti-
mality. Ann. Appl. Probab. 11, 1, 1–48.

[6] Benny Van Houdt. 2022. On the Stochastic and Asymptotic Im-
provement of First-Come First-Served and Nudge Scheduling.
Proc. ACM Meas. Anal. Comput. Syst. 6, 3, 1–22.

[7] Richard R. Weber. 1992. On the Gittins Index for Multiarmed
Bandits. Ann. Appl. Probab. 2, 4, 1024–1033.

[8] Adam Wierman and Bert Zwart. 2012. Is Tail-Optimal Schedul-
ing Possible? Oper. Res. 60, 5, 1249–1257.

[9] George Yu and Ziv Scully. 2024. Strongly Tail-Optimal Schedul-
ing in the Light-Tailed M/G/1. Proc. ACM Meas. Anal. Com-
put. Syst. 8, 2, Article 27, 33 pages.


	Introduction
	Background on tail optimality
	How much preemption is too much?

	Prior work on boost policies
	Key ideas
	Finding the optimal scheduling policy
	Proving optimality

	The Batch Problem
	Proving Strong Tail Optimality

